Enabling large-scale offshore wind with underground hydrogen storage

First Break ◽  
2021 ◽  
Vol 39 (6) ◽  
pp. 59-62
Author(s):  
Julien Mouli-Castillo ◽  
Katriona Edlmann ◽  
Eike Thaysen ◽  
Jonathan Scafidi
2017 ◽  
Vol 42 (36) ◽  
pp. 22987-23003 ◽  
Author(s):  
Alain Le Duigou ◽  
Anne-Gaëlle Bader ◽  
Jean-Christophe Lanoix ◽  
Lionel Nadau

Author(s):  
Niklas Heinemann ◽  
Juan Alcalde ◽  
Johannes M. Miocic ◽  
Suzanne J. T. Hangx ◽  
Jens Kallmeyer ◽  
...  

Expectations for energy storage are high but large-scale underground hydrogen storage in porous media (UHSP) remains largely untested. This article identifies and discusses the scientific challenges of hydrogen storage in...


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3598
Author(s):  
Sara Russo ◽  
Pasquale Contestabile ◽  
Andrea Bardazzi ◽  
Elisa Leone ◽  
Gregorio Iglesias ◽  
...  

New large-scale laboratory data are presented on a physical model of a spar buoy wind turbine with angular motion of control surfaces implemented (pitch control). The peculiarity of this type of rotating blade represents an essential aspect when studying floating offshore wind structures. Experiments were designed specifically to compare different operational environmental conditions in terms of wave steepness and wind speed. Results discussed here were derived from an analysis of only a part of the whole dataset. Consistent with recent small-scale experiments, data clearly show that the waves contributed to most of the model motions and mooring loads. A significant nonlinear behavior for sway, roll and yaw has been detected, whereas an increase in the wave period makes the wind speed less influential for surge, heave and pitch. In general, as the steepness increases, the oscillations decrease. However, higher wind speed does not mean greater platform motions. Data also indicate a significant role of the blade rotation in the turbine thrust, nacelle dynamic forces and power in six degrees of freedom. Certain pairs of wind speed-wave steepness are particularly unfavorable, since the first harmonic of the rotor (coupled to the first wave harmonic) causes the thrust force to be larger than that in more energetic sea states. The experiments suggest that the inclusion of pitch-controlled, variable-speed blades in physical (and numerical) tests on such types of structures is crucial, highlighting the importance of pitch motion as an important design factor.


2013 ◽  
Vol 448-453 ◽  
pp. 1732-1737
Author(s):  
Liu Bin ◽  
Hong Wei Cui ◽  
Li Xu ◽  
Kun Wang ◽  
Zhu Zhan ◽  
...  

This paper analyses the characteristics of large-scale offshore wind farm collection network and the impact of the medium voltage collection system optimization,while from the electrical technology point,it proposes the short circuit current of the collection network computational model and algorithms,based on the principle of equivalent circuit.Taking a wind power coolection system planned for a certain offshore wind farm planning for example, the validity of the model and algorithm is verified.


2021 ◽  
Author(s):  
Orsolya Gelencsér ◽  
Zsuzsanna Szabó-Krausz ◽  
László Mika ◽  
Daniel Breitner ◽  
Tibor Németh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document