scholarly journals Improvement in time-domain induced polarization data quality with multi-electrode systems by separating current and potential cables

2012 ◽  
Vol 10 (6) ◽  
pp. 545-565 ◽  
Author(s):  
Torleif Dahlin ◽  
Virginie Leroux
2011 ◽  
Author(s):  
Aurélie Gazoty ◽  
Esben Auken ◽  
Jesper Pedersen ◽  
Gianluca Fiandaca ◽  
Anders Vest Christiansen

Geophysics ◽  
1984 ◽  
Vol 49 (11) ◽  
pp. 1993-2003 ◽  
Author(s):  
Ian M. Johnson

A method for the extraction of Cole-Cole spectral parameters from time‐domain induced polarization data is demonstrated. The instrumentation required to effect the measurement and analysis is described. The Cole-Cole impedance model is shown to work equally well in the time domain as in the frequency domain. Field trials show the time‐domain method to generate spectral parameters consistent with those generated by frequency‐domain surveys. This is shown to be possible without significant alteration to field procedures. Cole-Cole time constants of up to 100 s are shown to be resolvable given a transmitted current of a 2 s pulse‐time. The process proves to have added usefulness as the Cole-Cole forward solution proves an excellent basis for quantifying noise in the measured decay.


2020 ◽  
Author(s):  
Adrian S. Barfod* ◽  
Jakob Juul Larsen

<p>Exploring and studying the earth system is becoming increasingly important as the slow depletion of natural resources ensues. An important data source is geophysical data, collected worldwide. After gathering data, it goes through vigorous quality control, pre-processing, and inverse modelling procedures. Such procedures often have manual components, and require a trained geophysicist who understands the data, in order to translate it into useful information regarding the earth system. The sheer amounts of geophysical data collected today makes manual approaches impractical. Therefore, automating as much of the workflow related to geophysical data as possible, would allow novel opportunities such as fully automated geophysical monitoring systems, real-time modeling during data collection, larger geophysical data sets, etc.</p><p>Machine learning has been proposed as a tool for automating workflows related to geophysical data. The field of machine learning encompasses multiple tools, which can be applied in a wide range of geophysical workflows, such as pre-processing, inverse modeling, data exploration etc.</p><p>We present a study where machine learning is applied to automate the time domain induced polarization geophysical workflow. Such induced polarization data requires pre-processing, which is manual in nature. One of the pre-processing steps is that a trained geophysicist inspects the data, and removes so-called non-geologic signals, i.e. noise, which does not represent geological variance. Specifically, a real-world case from Grindsted Denmark is presented. Here, a time domain induced polarization survey was conducted containing seven profiles. Two lines were manually processed and used for supervised training of an artificial neural network. The neural net then automatically processed the remaining profiles of the survey, with satisfactory results. Afterwards, the processed data was inverted, yielding the induced polarization parameters respective to the Cole-Cole model. We discuss the limitations and optimization steps related to training such a classification network.</p>


2021 ◽  
Vol 225 (3) ◽  
pp. 1982-2000
Author(s):  
Tina Martin ◽  
Konstantin Titov ◽  
Andrey Tarasov ◽  
Andreas Weller

SUMMARY Spectral information obtained from induced polarization (IP) measurements can be used in a variety of applications and is often gathered in frequency domain (FD) at the laboratory scale. In contrast, field IP measurements are mostly done in time domain (TD). Theoretically, the spectral content from both domains should be similar. In practice, they are often different, mainly due to instrumental restrictions as well as the limited time and frequency range of measurements. Therefore, a possibility of transition between both domains, in particular for the comparison of laboratory FD IP data and field TD IP results, would be very favourable. To compare both domains, we conducted laboratory IP experiments in both TD and FD. We started with three numerical models and measurements at a test circuit, followed by several investigations for different wood and sandstone samples. Our results demonstrate that the differential polarizability (DP), which is calculated from the TD decay curves, can be compared very well with the phase of the complex electrical resistivity. Thus, DP can be used for a first visual comparison of FD and TD data, which also enables a fast discrimination between different samples. Furthermore, to compare both domains qualitatively, we calculated the relaxation time distribution (RTD) for all data. The results are mostly in agreement between both domains, however, depending on the TD data quality. It is striking that the DP and RTD results are in better agreement for higher data quality in TD. Nevertheless, we demonstrate that IP laboratory measurements can be carried out in both TD and FD with almost equivalent results. The RTD enables a good comparability of FD IP laboratory data with TD IP field data.


Sign in / Sign up

Export Citation Format

Share Document