Integrated Pore-Pressure Prediction Using High-Resolution Seismic Velocity and Rock Physics

Author(s):  
J. Khazanehdari ◽  
N. Dutta ◽  
M. Portet ◽  
R. Bachrach
Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. WA23-WA42
Author(s):  
Xuan Qin ◽  
De-Hua Han ◽  
Luanxiao Zhao

Characterizing the elastic signatures of overpressure of shale caused by the smectite-to-illite transition relies on a good understanding of this mechanism and is also necessary for pore-pressure prediction. Methods of pore-pressure prediction in shales that have undergone smectite-to-illite transition are mostly based on empirical fitting without a quantitative interpretation based on a micromechanism analysis. With upscaled wireline-logging data, two trends of smectite-to-illite transition are categorized by using the crossplot of sonic traveltime and density. Trend I associated with a fluid-expansion scenario exhibits a decrease of sonic velocity with little change in the bulk density, whereas trend II induced by a fluid-loss scenario contains an increase of density with little change in the sonic velocity. The fluid expansion typically gives rise to high-magnitude overpressure and tends to happen when the overlying formations have more shaly contents and low permeability. The fluid loss case tends to have relatively deeper overpressure onsets, and its overlying formations tend to have more sandy contents with relatively high permeability. We develop a modeling framework to capture the elastic and pore-pressure evolution characteristics in shale during the smectite-to-illite transition. With proper bulk volume models, the velocity, density, and pore pressure increase of shale can be computed in the fluid expansion, fluid loss, and a mixture of these two scenarios. After calibration with logging data, rock-physics modeling can quantitatively interpret the rock-property evolution characteristics within the smectite-to-illite transition zone.


Geophysics ◽  
1998 ◽  
Vol 63 (5) ◽  
pp. 1604-1617 ◽  
Author(s):  
Zhijing Wang ◽  
Michael E. Cates ◽  
Robert T. Langan

A carbon dioxide (CO2) injection pilot project is underway in Section 205 of the McElroy field, West Texas. High‐resolution crosswell seismic imaging surveys were conducted before and after CO2 flooding to monitor the CO2 flood process and map the flooded zones. The velocity changes observed by these time‐lapse surveys are typically on the order of −6%, with maximum values on the order of −10% in the vicinity of the injection well. These values generally agree with laboratory measurements if the effects of changing pore pressure are included. The observed dramatic compressional ([Formula: see text]) and shear ([Formula: see text]) velocity changes are considerably greater than we had initially predicted using the Gassmann (1951) fluid substitution analysis (Nolen‐Hoeksema et al., 1995) because we had assumed reservoir pressure would not change from survey to survey. However, the post‐CO2 reservoir pore fluid pressure was substantially higher than the original pore pressure. In addition, our original petrophysical data for dry and brine‐saturated reservoir rocks did not cover the range of pressures actually seen in the field. Therefore, we undertook a rock physics study of CO2 flooding in the laboratory, under the simulated McElroy pressures and temperature. Our results show that the combined effects of pore pressure buildup and fluid substitution caused by CO2 flooding make it petrophysically feasible to monitor the CO2 flood process and to map the flooded zones seismically. The measured data show that [Formula: see text] decreases from a minimum 3.0% to as high as 10.9%, while [Formula: see text] decreases from 3.3% to 9.5% as the reservoir rocks are flooded with CO2 under in‐situ conditions. Such [Formula: see text] and [Formula: see text] decreases, even if averaged over all the samples measured, are probably detectable by either crosswell or high‐resolution surface seismic imaging technologies. Our results show [Formula: see text] is sensitive to both the CO2 saturation and the pore pressure increase, but [Formula: see text] is particularly sensitive to the pore pressure increase. As a result, the combined [Formula: see text] and [Formula: see text] changes caused by the CO2 injection may be used, at least semiquantitatively, to separate CO2‐flooded zones with pore pressure buildup from those regions without pore pressure buildup or to separate CO2 zones from pressured‐up, non‐CO2 zones. Our laboratory results show that the largest [Formula: see text] and [Formula: see text] changes caused by CO2 injection are associated with high‐porosity, high‐permeability rocks. In other words, CO2 flooding and pore pressure buildup decrease [Formula: see text] and [Formula: see text] more in high‐porosity, high‐permeability samples. Therefore, it may be possible to delineate such high‐porosity, high‐permeability streaks seismically in situ. If the streaks are thick enough compared to seismic resolution, they can be identified by the larger [Formula: see text] or [Formula: see text] changes.


2003 ◽  
Author(s):  
N. C. Banik ◽  
G. Wool ◽  
G. Schultz ◽  
L. den Boer ◽  
W. Mao ◽  
...  

2012 ◽  
Author(s):  
Ram Kumar Thakur ◽  
David M. Angstadt ◽  
Kalyan Chakraborty ◽  
Kenneth D. Kelsch

2021 ◽  
Vol 11 (10) ◽  
pp. 3747-3758
Author(s):  
Abdulquadri O. Alabere ◽  
Olayemi K. Akangbe

AbstractFew wells targeting high temperature, high pressure intervals in most tertiary sedimentary basins have achieved their objective in terms of technicalities and cost. Since most shallow targets have been drilled, exploration focus is drifting into deeper plays both onshore and in deep offshore areas. To ensure safe and economic drilling campaigns, pore pressure prediction methodologies used in the region needs to be improved. The research aims at generating and testing a modification of Eaton’s equation fit for high temperature, high pressure intervals on a field. The evolution of pore pressure in the field was established from offset well data by making several crossplots, and fracture gradient was computed using Mathew and Kelly’s equation. Eaton’s equation parameters were then calibrated using several wells until a desired field scale result was achieved when compared with information from already drilled intervals i.e., kicks and RFT data. Seismic velocity data resulting from high density, high resolution velocity analysis done to target deep overpressured intervals were then used to predict 1D pore pressure models at six selected prospect locations. Analyses reveal depths shallower than 3800 m TVD/MSL with geothermal gradient 3.0 °C/100 m and pressure gradient less than 1.50sg EMW are affected mainly by undercompaction; depths greater than 3800 m TVD/MSL with geothermal gradient of 4.1 °C/10 m and pressure gradients reaching 1.82–2.12sg EMW are affected by unloading with a narrow drilling margin for the deep highly pressured prospect intervals. Eaton’s n-exponent was modified to 6, and it proved accurate in predicting high overpressure in the first prospect wells drilled.


Sign in / Sign up

Export Citation Format

Share Document