EVALUATION OF NEAR-FIELD EFFECTS ON ACTIVE SURFACE WAVE MEASUREMENTS WITH MULTIPLE RECEIVERS

Author(s):  
Sungsoo Yoon ◽  
Glenn J. Rix
2010 ◽  
Vol 69 (18) ◽  
pp. 1615-1622
Author(s):  
R. I. Tsekhmistro ◽  
N. N. Gorobets

2021 ◽  
Vol 19 (6) ◽  
pp. 2343-2370
Author(s):  
Federico Passeri ◽  
Cesare Comina ◽  
Sebastiano Foti ◽  
Laura Valentina Socco

AbstractThe compilation and maintenance of experimental databases are of crucial importance in all research fields, allowing for researchers to develop and test new methodologies. In this work, we present a flat-file database of experimental dispersion curves and shear wave velocity profiles, mainly from active surface wave testing, but including also data from passive surface wave testing and invasive methods. The Polito Surface Wave flat-file Database (PSWD) is a gathering of experimental measurements collected within the past 25 years at different Italian sites. Discussion on the database content is reported in this paper to evaluate some statistical properties of surface wave test results. Comparisons with other methods for shear wave velocity measurements are also considered. The main novelty of this work is the homogeneity of the PSWD in terms of processing and interpretation methods. A common processing strategy and a new inversion approach were applied to all the data in the PSWD to guarantee consistency. The PSWD can be useful for further correlation studies and is made available as a reference benchmark for the validation and verification of novel interpretation procedures by other researchers.


2010 ◽  
Vol 10 (6) ◽  
pp. 1281-1292 ◽  
Author(s):  
B. Poisson ◽  
R. Pedreros

Abstract. Two historical landslide-induced tsunamis that reached the coasts of the French Lesser Antilles are studied. First, the Martinique coast was hit by a tsunami down the western flank of Montagne Pelée at the beginning of the big eruption of May 1902. More recently, the northeastern coast of Guadeloupe was affected by a tsunami that had been generated around Montserrat by pyroclastic flows entering the sea, during the July 2003 eruption of the Soufrière Hills volcano. We use a modified version of the GEOWAVE model to compute numerical simulations of both events. Two source hypotheses are considered for each tsunami. The comparison of the simulation results with reported tsunami height data helps to discriminate between the tested source decriptions. In the Martinique case, we obtain a better fit to data when considering three successive lahars entering the sea, as a simplified single source leads to an overstimation of the tsunami wave heights at the coast. In the Montserrat case, the best model uses a unique source which volume corresponds to published data concerning the peak volume flow. These findings emphasize the importance of an accurate description of the relevant volume as well as the timing sequence of the source event in landslide-generated tsunami modelling. They also show that considering far-field effects in addition to near-field effects may significantly improve tsunami modelling.


Sign in / Sign up

Export Citation Format

Share Document