A Numerical Modelling Procedure For The Study Of The Streaming Potential Phenomenon In Embankment Dams

Author(s):  
Megan R. Sheffer ◽  
John A. Howie
Author(s):  
Paul Glover ◽  
Rong Peng ◽  
Piroska Lorinczi ◽  
Bangrang Di

<p>The development of seismo-electric (SE) exploration techniques relies significantly upon being able to understand and quantify the strength of frequency-dependent SE conversion. However, there have been very few SE measurements or modelling carried out. In this paper we present two experimental methods for making such measurements, and examine how the strength of SE conversion depends on frequency, porosity, permeability, and why it is unusual in shales. The first is based on an electromagnetic shaker and can be used in the 1 Hz to 2 kHz frequency range. The second is a piezo-electric water-bath apparatus which can be used in the 1kHz to 500 kHz frequency range.</p><p>The first apparatus has been tested on samples of Berea sandstone. Both the in-phase and in-quadrature components of the streaming potential coefficient have been measured with an uncertainty of better than ±4%. The experimental measurements show the critical frequency at which the quadrature component is maximal, and the frequency of this component is shown to agree very well with both permeability and grain size. The experimental measurements have been modelled using several different methods.</p><p>The second apparatus was used to measure SE coupling as a function of porosity and permeability, interpreting the results using a micro-capillary model and current theory. We found a general agreement between the theoretical curves and the test data, indicating that SE conversion is enhanced by increases in porosity over a range of different frequencies. However, SE conversion has a complex relationship with rock permeability, which changes with frequency, and which is more sensitive to changes in the petrophysical properties of low-permeability samples. This observation suggests that seismic conversion may have advantages in characterizing low permeability reservoirs such as tight gas and tight oil reservoirs as well as shale gas reservoirs.</p><p>We have also carried out SE measurements on Sichuan Basin shales (permeability 1.47 – 107 nD), together with some comparative measurements on sandstones (0.2 – 60 mD). Experimental results show that SE conversion in shales is comparable to that exhibited by sandstones, and is approximately independent of frequency in the seismic frequency range (<1 kHz). Anisotropy which arises from bedding in the shales results in anisotropy in the streaming potential coefficient. Numerical modelling has been used to examine the effects of varying zeta potential, porosity, tortuosity, dimensionless number and permeability. It was found that SE conversion is highly sensitive to changes in porosity, tortuosity and zeta potential in shales. Numerical modelling suggests that the cause of the SE conversion in shales is enhanced zeta potentials caused by clay minerals, which are highly frequency dependent. This is supported by a comparison of our experimental data with numerical modelling as a function of clay mineral composition from XRD measurements. Consequently, the sensitivity of SE coupling to the clay minerals suggests that SE exploration may have potential for the characterization of clay minerals in shale gas and shale oil reservoirs.</p>


2021 ◽  
Vol 132 ◽  
pp. 104028
Author(s):  
Ke He ◽  
Chongmin Song ◽  
Robin Fell

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2071
Author(s):  
Xin Zhang ◽  
Mingjie Zhao ◽  
Kui Wang

The study on the effect of material structure and solution properties on the streaming potential of the soil–rock mixture (SRM) will be beneficial for improving the reliability of the measurement results for self-potential monitoring in embankment dams. We design two experimental groups and investigate the changes of potential and pressure during seepage of SRM (slightly clay materials) with different compactness and different concentration. The effects of the compaction degree and solution concentration on the streaming potential coupling coefficient and streaming potential were analyzed. The test results demonstrate that when the clay content in soil matrix is slight, the potential has a linear relationship with the hydraulic head difference, and seepage obeys Darcy’s law. The surface conductivity is negligible at 0.01 M (1 M corresponds to a concentration of 58.4 g L−1) salinity, the compactness of the SRM decreases (the permeability coefficient increases), the apparent streaming potential coupling coefficient and pressure difference decrease is the reason streaming potential decreases. The permeability coefficient of the SRM is not affected by the change in salinity (0.0001–1 M) at 85% compactness, and its seepage characteristics are related to the mineral composition, morphology and the thickness of the bound water layer (electric double layer). This study lays a foundation for further research on the self-potential method to monitor the structure of embankment dams.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


Sign in / Sign up

Export Citation Format

Share Document