scholarly journals Experimental Study on the Streaming Potential Phenomenon Response to Compactness and Salinity in Soil–Rock Mixture

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2071
Author(s):  
Xin Zhang ◽  
Mingjie Zhao ◽  
Kui Wang

The study on the effect of material structure and solution properties on the streaming potential of the soil–rock mixture (SRM) will be beneficial for improving the reliability of the measurement results for self-potential monitoring in embankment dams. We design two experimental groups and investigate the changes of potential and pressure during seepage of SRM (slightly clay materials) with different compactness and different concentration. The effects of the compaction degree and solution concentration on the streaming potential coupling coefficient and streaming potential were analyzed. The test results demonstrate that when the clay content in soil matrix is slight, the potential has a linear relationship with the hydraulic head difference, and seepage obeys Darcy’s law. The surface conductivity is negligible at 0.01 M (1 M corresponds to a concentration of 58.4 g L−1) salinity, the compactness of the SRM decreases (the permeability coefficient increases), the apparent streaming potential coupling coefficient and pressure difference decrease is the reason streaming potential decreases. The permeability coefficient of the SRM is not affected by the change in salinity (0.0001–1 M) at 85% compactness, and its seepage characteristics are related to the mineral composition, morphology and the thickness of the bound water layer (electric double layer). This study lays a foundation for further research on the self-potential method to monitor the structure of embankment dams.

2007 ◽  
Vol 11 (5) ◽  
pp. 1661-1671 ◽  
Author(s):  
A. Bolève ◽  
A. Revil ◽  
F. Janod ◽  
J. L. Mattiuzzo ◽  
A. Jardani

Abstract. The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of establishing a constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation has been extended in the inertial laminar flow regime and to unsaturated conditions with applications to the vadose zone. This formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between finite element simulations performed and field observations. Thus, this formulation could be useful for the inverse mapping of the geometry of groundwater flow from self-potential field measurements.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin Zhang ◽  
Mingjie Zhao ◽  
Kui Wang

The streaming potential effect in soil-rock mixture (SRM) is related to the compactness and rock content, but there is no model to quantitatively describe this behavior. In this paper, the Kozeny–Carman (KC) equation is modified by using the compactness and rock content. Then, the modified KC equation is substituted into the equation of streaming potential coupling coefficient. A new modified model of streaming potential coupling coefficient that depends on the compactness, rock content, particle shape, and particle gradation is proposed. The reliability of the new modified model is tested by experiments, and the applicable scope of the model is obtained. The results show that when the rock content is 30%, the permeability coefficient prediction accuracy of the modified KC equation is higher in the range of 85–95% compactness. The new modified model of the streaming potential coupling coefficient represents well the control of the compactness (75–95%) on the coupling coefficient. When the compactness remains 85%, the permeability coefficient calculated by the modified KC equation in the range of 10–70% rock content is consistent with the experimental data. The influence of the rock content (10–90%) on the coupling coefficient is well described by the new modified model of the streaming potential coupling coefficient. The new modified model of streaming potential coupling coefficient is helpful to quantitatively evaluate the internal structure evolution of embankment dam by using streaming potential phenomenon.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 585
Author(s):  
Xin Zhang ◽  
Mingjie Zhao ◽  
Kui Wang

To applicate streaming potential phenomenon to study the seepage feature in the soil–rock mixture (SRM), research on the variation in the streaming potential phenomenon of SRM is the precondition. This paper deals, in assistance with the streaming potential test apparatus, with the streaming potential effect response of SRM subjected to different rock contents. The test results show that when the rock content increases from 10% to 30%, the streaming potential coupling coefficient increases with the increases in rock content at 85% compactness and 0.01 mol L−1 salinity. When the rock content is more than 30%, the streaming potential coupling coefficient decreases with the increases in rock content. As the rock content increases, the permeability coefficient has a negative correlation with the streaming potential coupling coefficient. The streaming potential increases first and then goes down with the increases in rock content, and the streaming potential decreases significantly when the rock content exceeds 50%. The findings indicate that the rock content is the key structural factor that restricts the streaming potential phenomenon of the SRM.


2012 ◽  
Vol 516-517 ◽  
pp. 1870-1873 ◽  
Author(s):  
Jun Wang ◽  
Heng Shan Hu

The electrokinetic effects are important in the understanding of electric properties in porous medium. In this study, the streaming potential and streaming current of saturated samples are measured at different concentrations, then three methods are applied to obtain the zeta-potential and electrokinetic coupling coefficient. The study shows that the results obtained from streaming potential and streaming current methods agree well with each other, but the results obtained from simplified streaming potential method become seriously inaccurate at low concentrations due to the influence of surface conductance. This experimental study also provides a reliable estimate of the surface conductivity and its contribution to zeta-potential at given concentrations.


2017 ◽  
Vol 210 (1) ◽  
pp. 291-302 ◽  
Author(s):  
A. Cerepi ◽  
A. Cherubini ◽  
B. Garcia ◽  
H. Deschamps ◽  
A. Revil

2018 ◽  
Vol 216 (1) ◽  
pp. 55-60 ◽  
Author(s):  
T Heinze ◽  
JK Limbrock ◽  
SP Pudasaini ◽  
A Kemna

SUMMARY Landslides present a latent danger to lives and infrastructure worldwide. Often such mass movements are caused by increasing pore pressure. The electrical self-potential (SP) method has been applied in a broad range of monitoring studies. When fluid flow is involved the most relevant source of SP is the streaming potential, caused by the flow of an electrolyte through porous media with electrically charged internal surfaces. We experimentally investigated the SP signal associated with deformation of partially saturated soil. For partly saturated scenarios, we observed an SP signature correlated with the mass movement. In dry experiments, we did not observe any significant change in the electric signal. Results of numerical simulations match with the experimental observations when assuming a local and temporary alteration of the hydraulic pressure due to the sliding mass. Our findings suggest that SP measurements can be used to observe mass movement triggered by fluid pressure variations through the streaming potential.


2011 ◽  
Vol 35 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Flávio Adriano Marques ◽  
Márcia Regina Calegari ◽  
Pablo Vidal-Torrado ◽  
Peter Buurman

The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Lianzhen Zhang ◽  
Qingsong Zhang ◽  
Zhipeng Li ◽  
Hongbo Wang

In fracture or compaction grouting projects of sand layer, there exist many compacted sand regions on both sides of grout veins or around grout bulbs. It has an important effect on the final reinforcement effect of the sand layer that how much performance of the sand layer is improved after being compacted. Compression modulus, cohesion, and permeability coefficient are selected to be the performance indexes of the compaction reinforcement effect of sand. The relationship between the performance properties of sand and grouting pressure has been tested and analyzed. And influences of clay content and initial water ratio of sand on the compaction reinforcement effect have been studied. Results show that compaction can effectively improve the mechanical properties and impermeability properties of sand. Compression modulus of sand increases by 2∼18 times. The cohesion of sand increases from the scope of 9.4∼26 kPa to the scope of 40∼113.6 kPa. The permeability coefficient of sand decreases from the scope of 1.0 × 10−2∼ 8.33 × 10−4 cm/s to the scope of 2.19 × 10−4∼2.77 × 10−9 cm/s. When the clay content of sand is smaller than about 20%, sand cannot be reinforced effectively by compaction. Cohesion cannot be improved significantly and the permeability coefficient cannot be reduced markedly. A high initial water ratio of sand is beneficial to improve the compression modulus of compacted sand and goes against the improvement of cohesion of compacted sand. In addition, the initial water ratio has little effect on the permeability coefficient of compacted sand. In the end, fitting formulas have been developed to quantitatively describe the compaction reinforcement effect of sand by different grouting pressures.


Sign in / Sign up

Export Citation Format

Share Document