The Use of Gravity Prospecting to Help the Seismic Microzonation Studies of the Leonessa Basin in Rieti, Italy

Author(s):  
K. Skrame ◽  
M. Di Filippo
2004 ◽  
Vol 161 (5-6) ◽  
pp. 1149-1164 ◽  
Author(s):  
C. O. Cioflan ◽  
B. F. Apostol ◽  
C. L. Moldoveanu ◽  
G. F. Panza ◽  
GH. Marmureanu

2018 ◽  
Vol 11 (6) ◽  
Author(s):  
Maher Aldahri ◽  
Mahmoud El-Hadidy ◽  
Hani Zahran ◽  
Kamal Abdelrahman Hassanein

2004 ◽  
Vol 33 (2) ◽  
pp. 211-225 ◽  
Author(s):  
Rabin Tuladhar ◽  
Fumio Yamazaki ◽  
Pennung Warnitchai ◽  
Jun Saita

2005 ◽  
Vol 162 (4) ◽  
pp. 671-682 ◽  
Author(s):  
A. Teramo ◽  
M. Maugeri ◽  
A. Bottari ◽  
D. Termini

2004 ◽  
Vol 8 (4) ◽  
pp. 585-596 ◽  
Author(s):  
ABDELOUAHID TALHAOUI ◽  
AOMAR IBEN BRAHIM ◽  
M'HAMED ABERKAN ◽  
MOHAMED KASMI ◽  
AZELARAB EL MOURAOUAH

2017 ◽  
Vol 17 (6) ◽  
pp. 925-937 ◽  
Author(s):  
Andrej Gosar

Abstract. The town of Idrija is located in an area with an increased seismic hazard in W Slovenia and is partly built on alluvial sediments or artificial mining and smelting deposits which can amplify seismic ground motion. There is a need to prepare a comprehensive seismic microzonation in the near future to support seismic hazard and risk assessment. To study the applicability of the microtremor horizontal-to-vertical spectral ratio (HVSR) method for this purpose, 70 free-field microtremor measurements were performed in a town area of 0.8 km2 with 50–200 m spacing between the points. The HVSR analysis has shown that it is possible to derive the sediments' resonance frequency at 48 points. With the remaining one third of the measurements, nearly flat HVSR curves were obtained, indicating a small or negligible impedance contrast with the seismological bedrock. The isofrequency (a range of 2.5–19.5 Hz) and the HVSR peak amplitude (a range of 3–6, with a few larger values) maps were prepared using the natural neighbor interpolation algorithm and compared with the geological map and the map of artificial deposits. Surprisingly no clear correlation was found between the distribution of resonance frequencies or peak amplitudes and the known extent of the supposed soft sediments or deposits. This can be explained by relatively well-compacted and rather stiff deposits and the complex geometry of sedimentary bodies. However, at several individual locations it was possible to correlate the shape and amplitude of the HVSR curve with the known geological structure and prominent site effects were established in different places. In given conditions (very limited free space and a high level of noise) it would be difficult to perform an active seismic refraction or MASW measurements to investigate the S-wave velocity profiles and the thickness of sediments in detail, which would be representative enough for microzonation purposes. The importance of the microtremor method is therefore even greater, because it enables a direct estimation of the resonance frequency without knowing the internal structure and physical properties of the shallow subsurface. The results of this study can be directly used in analyses of the possible occurrence of soil–structure resonance of individual buildings, including important cultural heritage mining and other structures protected by UNESCO. Another application of the derived free-field isofrequency map is to support soil classification according to the recent trends in building codes and to calibrate Vs profiles obtained from the microtremor array or geophysical measurements.


Author(s):  
C. O. Cioflan ◽  
B. F. Apostol ◽  
C. L. Moldoveanu ◽  
G. F. Panza ◽  
Gh. Marmureanu

2021 ◽  
Author(s):  
Gino Romagnoli ◽  
Gianluca Carbone ◽  
Stefano Catalano ◽  
Massimo Cesarano ◽  
Stefania Fabozzi ◽  
...  

<p>The availability of a unique database, where all data of the seismic microzonation studies carried out in about 1900 municipalities of Italy (https://www.webms.it/) are achieved with a standardized format, allowed statistical elaborations in terms of subsoil parameters. In particular, we analysed borehole logs and geophysical data in order to characterize them with the shear wave velocity (Vs) vertical profile, and the code of standardized engineering geological units, according to the Italian Guidelines for Seismic Microzonation (Seismic Microzonation Working Group, 2015; 2018). The Vs parameter, extracted from about 3700 geophysical surveys, was correlated to the engineering geological units from the borehole logs, with 1meter step. The correlation was performed for about 1700 available Down-Hole (DH) surveys and for about 2000 Multichannel Analyses of Surface Waves (MASW). For these latter, we selected only MASW surveys located near boreholes, no more than 100 m away. The statistical analysis on the distribution and dispersion of Vs parameter allowed to calculate the Vs values related to the mode, mean, median, standard deviation, first quartile, third quartile, minimum and maximum, and the trend with depth of Vs for each engineering geological unit. Validation with external datasets (e.g. Italian Vs30 map, Mori et al., 2020) demonstrates that the characterization of engineering geological units in term of Vs, based on velocity profiles extracted by the Italian seismic microzonation dataset, allow to reliably characterize the engineering geological model, where no geophysical data are available. Statistics of subsoil parameters will represent a fundamental tool for computing local seismic ground motion parameters (e.g. PGA, H<sub>SM</sub>) in the areas not covered by seismic microzonation studies.</p><p><strong>References</strong></p><p>- Mori, F., Mendicelli, A., Moscatelli, M., Romagnoli, 796 G., Peronace, E., Naso, G., 2020. A new Vs30 map for Italy based on the seismic microzonation dataset. Engineering Geology 275, 105745. https://doi.org/10.1016/j.enggeo.2020.105745.</p><p>- Seismic Microzonation Working Group, 2015. Guidelines for Seismic Microzonation http://www.protezionecivile.gov.it/httpdocs/cms/attach_extra/GuidelinesForSeismicMicrozonation.pdf</p><p>- Seismic Microzonation Working Group, 2018. Standard di rappresentazione e archiviazione informatica Versione 4.1. http://www.protezionecivile.gov.it/attivita-rischi/rischio-sismico/attivita/commissione-supporto-monitoraggio-studi-microzonazione/standard-rappresentazione-archiviazione-informatica</p>


Sign in / Sign up

Export Citation Format

Share Document