Improved History Matching and Uncertainty Quantification for Gas Condensate Fields Using an Ensemble Based Approach

Author(s):  
A. Barliansyah ◽  
T. Skåre ◽  
T.F. Munck ◽  
J. Sætrom
2013 ◽  
Vol 50 ◽  
pp. 4-15 ◽  
Author(s):  
D. Arnold ◽  
V. Demyanov ◽  
D. Tatum ◽  
M. Christie ◽  
T. Rojas ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1557
Author(s):  
Amine Tadjer ◽  
Reidar B. Bratvold

Carbon capture and storage (CCS) has been increasingly looking like a promising strategy to reduce CO2 emissions and meet the Paris agreement’s climate target. To ensure that CCS is safe and successful, an efficient monitoring program that will prevent storage reservoir leakage and drinking water contamination in groundwater aquifers must be implemented. However, geologic CO2 sequestration (GCS) sites are not completely certain about the geological properties, which makes it difficult to predict the behavior of the injected gases, CO2 brine leakage rates through wellbores, and CO2 plume migration. Significant effort is required to observe how CO2 behaves in reservoirs. A key question is: Will the CO2 injection and storage behave as expected, and can we anticipate leakages? History matching of reservoir models can mitigate uncertainty towards a predictive strategy. It could prove challenging to develop a set of history matching models that preserve geological realism. A new Bayesian evidential learning (BEL) protocol for uncertainty quantification was released through literature, as an alternative to the model-space inversion in the history-matching approach. Consequently, an ensemble of previous geological models was developed using a prior distribution’s Monte Carlo simulation, followed by direct forecasting (DF) for joint uncertainty quantification. The goal of this work is to use prior models to identify a statistical relationship between data prediction, ensemble models, and data variables, without any explicit model inversion. The paper also introduces a new DF implementation using an ensemble smoother and shows that the new implementation can make the computation more robust than the standard method. The Utsira saline aquifer west of Norway is used to exemplify BEL’s ability to predict the CO2 mass and leakages and improve decision support regarding CO2 storage projects.


2021 ◽  
Author(s):  
Son Hoang ◽  
Tung Tran ◽  
Tan Nguyen ◽  
Tu Truong ◽  
Duy Pham ◽  
...  

Abstract This paper reports a successful case study of applying machine learning to improve the history matching process, making it easier, less time-consuming, and more accurate, by determining whether Local Grid Refinement (LGR) with transmissibility multiplier is needed to history match gas-condensate wells producing from geologically complex reservoirs as well as determining the required LGR setup to history match those gas-condensate producers. History matching Hai Thach gas-condensate production wells is extremely challenging due to the combined effect of condensate banking, sub-seismic fault network, complex reservoir distribution and connectivity, uncertain HIIP, and lack of PVT data for most reservoirs. In fact, for some wells, many trial simulation runs were conducted before it became clear that LGR with transmissibility multiplier was required to obtain good history matching. In order to minimize this time-consuming trial-and-error process, machine learning was applied in this study to analyze production data using synthetic samples generated by a very large number of compositional sector models so that the need for LGR could be identified before the history matching process begins. Furthermore, machine learning application could also determine the required LGR setup. The method helped provide better models in a much shorter time, and greatly improved the efficiency and reliability of the dynamic modeling process. More than 500 synthetic samples were generated using compositional sector models and divided into separate training and test sets. Multiple classification algorithms such as logistic regression, Gaussian Naive Bayes, Bernoulli Naive Bayes, multinomial Naive Bayes, linear discriminant analysis, support vector machine, K-nearest neighbors, and Decision Tree as well as artificial neural networks were applied to predict whether LGR was used in the sector models. The best algorithm was found to be the Decision Tree classifier, with 100% accuracy on the training set and 99% accuracy on the test set. The LGR setup (size of LGR area and range of transmissibility multiplier) was also predicted best by the Decision Tree classifier with 91% accuracy on the training set and 88% accuracy on the test set. The machine learning model was validated using actual production data and the dynamic models of history-matched wells. Finally, using the machine learning prediction on wells with poor history matching results, their dynamic models were updated and significantly improved.


Sign in / Sign up

Export Citation Format

Share Document