scholarly journals Managing Uncertainty in Geological CO2 Storage Using Bayesian Evidential Learning

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1557
Author(s):  
Amine Tadjer ◽  
Reidar B. Bratvold

Carbon capture and storage (CCS) has been increasingly looking like a promising strategy to reduce CO2 emissions and meet the Paris agreement’s climate target. To ensure that CCS is safe and successful, an efficient monitoring program that will prevent storage reservoir leakage and drinking water contamination in groundwater aquifers must be implemented. However, geologic CO2 sequestration (GCS) sites are not completely certain about the geological properties, which makes it difficult to predict the behavior of the injected gases, CO2 brine leakage rates through wellbores, and CO2 plume migration. Significant effort is required to observe how CO2 behaves in reservoirs. A key question is: Will the CO2 injection and storage behave as expected, and can we anticipate leakages? History matching of reservoir models can mitigate uncertainty towards a predictive strategy. It could prove challenging to develop a set of history matching models that preserve geological realism. A new Bayesian evidential learning (BEL) protocol for uncertainty quantification was released through literature, as an alternative to the model-space inversion in the history-matching approach. Consequently, an ensemble of previous geological models was developed using a prior distribution’s Monte Carlo simulation, followed by direct forecasting (DF) for joint uncertainty quantification. The goal of this work is to use prior models to identify a statistical relationship between data prediction, ensemble models, and data variables, without any explicit model inversion. The paper also introduces a new DF implementation using an ensemble smoother and shows that the new implementation can make the computation more robust than the standard method. The Utsira saline aquifer west of Norway is used to exemplify BEL’s ability to predict the CO2 mass and leakages and improve decision support regarding CO2 storage projects.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6456
Author(s):  
Ewa Knapik ◽  
Katarzyna Chruszcz-Lipska

Worldwide experiences related to geological CO2 storage show that the process of the injection of carbon dioxide into depleted oil reservoirs (CCS-EOR, Carbon Capture and Storage—Enhanced Oil Recovery) is highly profitable. The injection of CO2 will allow an increasing recovery factor (thus increasing CCS process profitability) and revitalize mature reservoirs, which may lead to oil spills due to pressure buildups. In Poland, such a solution has not yet been implemented in the industry. This work provides additional data for analysis of the possibility of the CCS-EOR method’s implementation for three potential clusters of Polish oil reservoirs located at a short distance one from another. The aim of the work was to examine the properties of reservoir fluids for these selected oil reservoirs in order to assure a better understanding of the physicochemical phenomena that accompany the gas injection process. The chemical composition of oils was determined by gas chromatography. All tested oils represent a medium black oil type with the density ranging from 795 to 843 g/L and the viscosity at 313 K, varying from 1.95 to 5.04 mm/s. The content of heavier components C25+ is up to 17 wt. %. CO2–oil MMP (Minimum Miscibility Pressure) was calculated in a CHEMCAD simulator using the Soave–Redlich–Kwong equation of state (SRK EoS). The oil composition was defined as a mixture of n-alkanes. Relatively low MMP values (ca. 8.3 MPa for all tested oils at 313 K) indicate a high potential of the EOR method, and make this geological CO2 storage form more attractive to the industry. For reservoir brines, the content of the main ions was experimentally measured and CO2 solubility under reservoir conditions was calculated. The reservoir brines showed a significant variation in properties with total dissolved solids contents varying from 17.5 to 378 g/L. CO2 solubility in brines depends on reservoir conditions and brine chemistry. The highest calculated CO2 solubility is 1.79 mol/kg, which suggest possible CO2 storage in aquifers.


KnE Energy ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 13
Author(s):  
Aisyah Kusuma ◽  
Eko Widianto ◽  
Rachmat Sule ◽  
Wawan Gunawan A. Kadir ◽  
Mega S. Gemilang

<p>Further to Kyoto Protocol, again in 2009 G-20 Pittsburg Summit, Indonesia delivered the commitment on reducing 26% on its emission level. Moreover, as non-annex 1 country, Indonesia shows strong and bold commitment in supporting reduction on increased concentrations of greenhouse gases produced by human activities such as burning the fossil fuels and deforestation. From the energy sector, Carbon Capture and Storage (CCS) is known as a process of capturing waste carbon dioxide (CO2) from large point sources and depositing it normally at an underground geological formation. CCS becomes now as one of the possible supports to the country commitment. In Indonesia, the potential of CCS applications could be conducted in the gas fields with high content of CO2 and in almost depleted oil fields (by applying CO2-Enchanced Oil Recovery (EOR) The CCS approach could also be conducted in order to increase hydrocarbon production, and at the same time the produced CO2 will be injected and storage it back to the earth. Thus, CCS is a mitigation process in enhancing carbon emission reduction caused by green house effect from production hydrocarbon fields.</p><p>This paper will show a proposed milestone on CCS Research roadmap, as steps to be taken in reaching the objective. The milestone consists of the study for identifying potential CO2 sources, evaluating CO2 storage sites, detail study related to CO2 storage selection, CO2 injection, and CO2 injection monitoring. Through these five steps, one can expect to be able to comprehend road map of CCS Research. Through this research milestone, applications of CCS should also be conducted based on the regulatory coverage milestone. From this paper, it is hoped that one can understand the upstream activities starting with research milestone to the very end downstream activities regarding to the regulation coverage bound. </p><p><em><strong>Keywords</strong></em>: CCS, reduction of carbon emission, regulation umbrella </p>


2018 ◽  
Vol 12 (1) ◽  
pp. 173
Author(s):  
Ade Nurisman ◽  
Retno Gumilang Dewi ◽  
Ucok W.R. Siagian

Diffusion and matrix adsorption simulations in enhanced coalbed methane process. Carbon capture and storage (CCS) can be considered as one of climate change mitigation efforts, through capturing and injecting of CO2 in underground formations for reducing CO2 emissions. CO2 injection in coalbed methane (CBM) reservoir has potentially attracted for reducing CO2 emissions and enhancing coalbed methane (ECBM) recovery. Diffusion and sorption are phenomenon of gas in the matrix on CO2 injection in CBM reservoir. The objectives of the research are focused on understanding of diffusion and sorption of gas in the coal matrix with mathematical model and estimating of CO2 storage in coalbed and CH4 recovery. In this research, mathematical model is developed to describe the mechanism in the matrix on ECBM process. Mathematical model, which have been valid, is simulated in various variables, i.e. macroprosity (0.001, 0.005, and 0,01), pressure (1, 3, and 6 MPa), temperature (305, 423, and 573 K), and initial fraction of CO2 (0.05, 0.1, 0.3, and 0.5). The results of this research show that preferential sequestration of CO2 and preferential recovery of CH4 in the surface of micropore on macroporosity 0.001, pressure 1 MPa, temperature 305 K, and inital fraction CO2 0,5 conditions are 0.9936 and 0.0064.Keywords: carbon capture and storage (CCS), coalbed methane (CBM), ECBM, diffusion, adsorption Abstrak Carbon capture and storage (CCS) dapat dipertimbangkan sebagai salah satu upaya mitigasi perubahan iklim, yaitu dengan menangkap CO2 dan menginjeksikannya ke dalam formasi bawah permukaan. Injeksi CO2 pada lapangan coalbed methane (CBM) berpotensi mengurangi emisi CO2 dan meningkatkan produksi CBM (ECBM). Pada proses injeksi CO2 di lapangan CBM, fenomena yang terjadi di dalam matriks lapisan batubara (coalbed) adalah difusi dan adsorpsi. Penelitian ini bertujuan memahami fenomena difusi dan adsorpsi pada proses injeksi CO2 untuk ECBM melalui model matematika, dan memperkirakan potensi penyimpanan CO2 di dalam lapangan CBM dan potensi recovery CH4. Pada penelitian dilakukan pengembangan model matematika untuk menjelaskan fenomena di dalam matriks pada proses ECBM. Model matematika, yang telah valid, disimulasikan dengan memvariasikan beberapa variabel, yaitu makroporositas (0,001, 0,005, dan 0,01), tekanan (1, 3, dan 6 MPa), suhu (305, 423, dan 573 K), dan fraksi CO2 awal (0,05, 0,1, 0,3, dan 0,5). Hasil penelitian menunjukkan pada makroporositas 0,001, tekanan 1 Pa, suhu 305 K, dan fraksi CO2 awal 0,5, fraksi CO2 yang teradsorpsi pada permukaan mikropori bernilai 0,9936 dan sisa fraksi CH4 yang teradsorpsi pada permukaan mikropori bernilai 0,0064. Kata kunci: carbon capture and storage (CCS), coalbed methane (CBM), ECBM, difusi, adsorpsi


Lab on a Chip ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 3806-3814
Author(s):  
Tsai-Hsing Martin Ho ◽  
Peichun Amy Tsai

Novel microfluidic visualizations reveal the simultaneous dynamics of salt nucleation and fluid drying rates while mimicking carbon capture and storage processes.


1969 ◽  
Vol 17 ◽  
pp. 13-16 ◽  
Author(s):  
Peter Frykman ◽  
Lars Henrik Nielsen ◽  
Thomas Vangkilde-Pedersen

Carbon capture and storage (CCS) is increasingly considered to be a tool that can significantly reduce the emission of CO2. It is viewed as a technology that can contribute to a substantial, global reduction of emitted CO2 within the timeframe that seems available for mitigating the effects of present and continued emission. In order to develop the CCS method the European Union (EU) has supported research programmes for more than a decade, which focus on capture techniques, transport and geological storage. The results of the numerous research projects on geological storage are summarised in a comprehensive best practice manual outlining guidelines for storage in saline aquifers (Chadwick et al. 2008). A detailed directive for geological storage is under implementation (European Commission 2009), and the EU has furthermore established a programme for supporting the development of more than ten large-scale demonstration plants throughout Europe. Geological investigations show that suitable storage sites are present in most European countries. In Denmark initial investigations conducted by the Geological Survey of Denmark and Greenland and private companies indicate that there is significant storage potential at several locations in the subsurface.


2020 ◽  
Vol 12 (22) ◽  
pp. 9723
Author(s):  
Chanmaly Chhun ◽  
Takeshi Tsuji

It is important to distinguish between natural earthquakes and those induced by CO2 injection at carbon capture and storage sites. For example, the 2004 Mw 6.8 Chuetsu earthquake occurred close to the Nagaoka CO2 storage site during gas injection, but we could not quantify whether the earthquake was due to CO2 injection or not. Here, changes in pore pressure during CO2 injection at the Nagaoka site were simulated and compared with estimated natural seasonal fluctuations in pore pressure due to rainfall and snowmelt, as well as estimated pore pressure increases related to remote earthquakes. Changes in pore pressure due to CO2 injection were clearly distinguished from those due to rainfall and snowmelt. The simulated local increase in pore pressure at the seismogenic fault area was much less than the seasonal fluctuations related to precipitation and increases caused by remote earthquakes, and the lateral extent of pore pressure increase was insufficient to influence seismogenic faults. We also demonstrated that pore pressure changes due to distant earthquakes are capable of triggering slip on seismogenic faults. The approach we developed could be used to distinguish natural from injection-induced earthquakes and will be useful for that purpose at other CO2 sequestration sites.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yuji Sano ◽  
Takanori Kagoshima ◽  
Naoto Takahata ◽  
Kotaro Shirai ◽  
Jin-Oh Park ◽  
...  

Carbon capture and storage (CCS) is considered a key technology for reducing CO2 emissions into the atmosphere. Nonetheless, there are concerns that if injected CO2 migrates in the crust, it may trigger slip of pre-existing faults. In order to test if this is the case, covariations of carbon, hydrogen, and oxygen isotopes of groundwater measured from Uenae well, southern Hokkaido, Japan are reported. This well is located 13 km away from the injection point of the Tomakomai CCS project and 21 km from the epicenter of September 6th, 2018 Hokkaido Eastern Iburi earthquake (M 6.7). Carbon isotope composition was constant from June 2015 to February 2018, and decreased significantly from April 2018 to November 2019, while total dissolved inorganic carbon (TDIC) content showed a corresponding increase. A decrease in radiocarbon and δ13C values suggests aquifer contamination by anthropogenic carbon, which could possibly be attributable to CCS-injected CO2. If such is the case, the CO2 enriched fluid may have initially migrated through permeable channels, blocking the fluid flow from the source region, increasing pore pressure in the focal region and triggering the natural earthquake where the brittle crust is already critically stressed.


2020 ◽  
Vol 52 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Jon G. Gluyas ◽  
Usman Bagudu

AbstractThe Endurance, four-way, dip-closed structure in UK Blocks 42/25 and 43/21 occurs over a salt swell diapir and within Triassic and younger strata. The Lower Triassic Bunter Sandstone Formation reservoir within the structure was tested twice for natural gas (in 1970 and 1990) but both wells were dry. The reservoir is both thick and high quality and, as such, an excellent candidate site for subsurface CO2 storage.In 2013 a consortium led by National Grid Carbon drilled an appraisal well on the structure and undertook an injection test ahead of a planned development of Endurance as the first bespoke storage site on the UK Continental Shelf with an expected injection rate of 2.68 × 106 t of dense phase CO2 each year for 20 years. The site was not developed following the UK Government's removal of financial support for carbon capture and storage (CCS) demonstration projects, but it is hoped with the recent March 2020 Budget that government support for CCS may now be back on track.


2013 ◽  
Vol 37 ◽  
pp. 3267-3274 ◽  
Author(s):  
Ji-Quan Shi ◽  
Claire Imrie ◽  
Caglar Sinayuc ◽  
Sevket Durucan ◽  
Anna Korre ◽  
...  

2019 ◽  
Vol 8 (6) ◽  
pp. e12861023 ◽  
Author(s):  
Pedro Junior Zucatelli ◽  
Ana Paula Meneguelo ◽  
Gisele de Lorena Diniz Chaves ◽  
Gisele de Lorena Diniz Chaves ◽  
Marielce de Cassia Ribeiro Tosta

The integrity of natural systems is already at risk because of climate change caused by the intense emissions of greenhouse gases in the atmosphere. The goal of geological carbon sequestration is to capture, transport and store CO2 in appropriate geological formations. In this review, we address the geological environments conducive to the application of CCS projects (Carbon Capture and Storage), the phases that make up these projects, and their associated investment and operating costs. Furthermore it is presented the calculations of the estimated financial profitability of different types of projects in Brazil. Using mathematical models, it can be concluded that the Roncador field presents higher gross revenue when the amount of extra oil that can be retrieved is 9.3% (US$ 48.55 billions approximately in 2018). Additional calculations show that the Paraná saline aquifer has the highest gross revenue (US$ 6.90 trillions in 2018) when compared to the Solimões (US$ 3.76 trillions approximately in 2018) and Santos saline aquifers (US$ 2.21 trillions approximately in 2018) if a CCS project were to be employed. Therefore, the proposed Carbon Capture and Storage method in this study is an important scientific contribution for reliable large-scale CO2 storage in Brazil.


Sign in / Sign up

Export Citation Format

Share Document