Radial Well Models Applications During Well Commissioning Operations on Kashagan Field

Author(s):  
B. Daulbayev ◽  
G.Galiyeva and F. Ibragimov
Keyword(s):  
2011 ◽  
Author(s):  
Sachin Kumar Sharma ◽  
Alexis Vincent Carrillat ◽  
Torsten Friedel
Keyword(s):  

2018 ◽  
Vol 19 (5) ◽  
pp. 1313-1321
Author(s):  
Xuezhen Zhang ◽  
Aidi Huo ◽  
Jucui Wang

Abstract In this paper, the theoretical basis for flow calculation in an injection well was discussed. It proposed that the flow rate of an injection well could be calculated referring to pumping theory and method. A mathematical model of the rising curve of water level around a radial well was established and the equation for calculating the rising curve was given. The calculation equations selected for the water absorption capacity of injection wells were explained and examples were verified and compared. The results indicated that, under the same injection conditions, the water level value calculated by the analysis method was slightly larger, but the error between the analysis method and the semi-theoretical and semi-empirical methods was small. In the processes of steady flow injection and unsteady flow injection, there was a small difference of water absorption capacity, and the former was slightly larger. The measured values of water absorption capacity were only about one-third of the calculated values based on pumping theory. Overall, the analytical solution method for predicting the rising curve of water level has priority in well injection. The semi-theoretical and semi-empirical equation for calculating water absorption capacity sifted first has priority in steady flow injection, the equation sifted second has priority in unsteady flow injection.


2021 ◽  
Author(s):  
Rafael Islamov ◽  
Eghbal Motaei ◽  
Bahrom Madon ◽  
Khairul Azhar Abu Bakar ◽  
Victor Hamdan ◽  
...  

Abstract Dynamic Well Operating Envelop (WOE) allows to ensure that well is maintained and operated within design limits and operated in the safe, stable and profitable way. WOE covers the Well Integrity, Reservoir constraints and Facility limitations and visualizes them on well performance chart (Hamzat et al., 2013). Design and operating limits (such as upper and lower completion/facilities design pressures, sand failure, erosion limitations, reservoir management related limitations etc) are identified and translated into two-dimensional WOE (pressure vs. flowrate) to ensure maximum range of operating conditions that represents safe and reliable operation are covered. VLP/IPR performance curves were incorporated based on latest Validated Well Model. Optimum well operating window represents the maximum range of operating conditions within the Reservoir constraints assessed. By introducing actual Well Performance data the optimisation opportunities such as production/injection enhancement identified. During generating the Well Operating Envelops tremendous work being done to rectify challenges such as: most static data (i.e. design and reservoir limitations) are not digitized, unreliable real-time/dynamic data flow (i.e. FTHP, Oil/Gas rates etc), disintegrated and unreliable well Models and no solid workflows for Flow assurance. As a pre-requisite the workflows being developed to make data tidy i.e.ready and right, and Well Model inputs being integrated to build updated Well Models. Successful WOE prototype is generated for natural and artificially lifted Oil and Gas wells. Optimisation opportunities being identified (i.e. flowline pressure reduction, reservoir stimulation and bean-up) Proactive maintenance is made possible through dynamic WOE as a real time exceptional based surveillance (EBS) tool which is allowing Asset engineers to conduct the well performance monitoring, and maintain it within safe, stable and profitable window. Additionally, it allows to track all Production Enhancement jobs and seamless forecasting for new opportunities.


Author(s):  
Shi Jihui ◽  
Cheng Yuanfang ◽  
Li Xiaolong ◽  
Xiao Wen ◽  
Li Menglai

1948 ◽  
Vol 19 (2) ◽  
pp. 218-218 ◽  
Author(s):  
Mary Jane Auld

2013 ◽  
Vol 37 ◽  
pp. 3960-3970 ◽  
Author(s):  
M.D. White ◽  
D.H. Bacon ◽  
S.K. White ◽  
Z.F. Zhang

2018 ◽  
Vol 8 (4) ◽  
pp. 1547-1557 ◽  
Author(s):  
Xiaolong Li ◽  
Wen Xiao ◽  
Zhanqing Qu ◽  
Tiankui Guo ◽  
Jianxiong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document