scholarly journals Rules of fracture propagation of hydraulic fracturing in radial well based on XFEM

2018 ◽  
Vol 8 (4) ◽  
pp. 1547-1557 ◽  
Author(s):  
Xiaolong Li ◽  
Wen Xiao ◽  
Zhanqing Qu ◽  
Tiankui Guo ◽  
Jianxiong Li ◽  
...  
2021 ◽  
pp. 014459872198899
Author(s):  
Weiyong Lu ◽  
Changchun He

Directional rupture is one of the most important and most common problems related to rock breaking. The goal of directional rock breaking can be effectively achieved via multi-hole linear co-directional hydraulic fracturing. In this paper, the XSite software was utilized to verify the experimental results of multi-hole linear co-directional hydraulic fracturing., and its basic law is studied. The results indicate that the process of multi-hole linear co-directional hydraulic fracturing can be divided into four stages: water injection boost, hydraulic fracture initiation, and the unstable and stable propagation of hydraulic fracture. The stable expansion stage lasts longer and produces more microcracks than the unstable expansion stage. Due to the existence of the borehole-sealing device, the three-dimensional hydraulic fracture first initiates and expands along the axial direction in the bare borehole section, then extends along the axial direction in the non-bare hole section and finally expands along the axial direction in the rock mass without the borehole. The network formed by hydraulic fracture in rock is not a pure plane, but rather a curved spatial surface. The curved spatial surface passes through both the centre of the borehole and the axial direction relative to the borehole. Due to the boundary effect, the curved spatial surface goes toward the plane in which the maximum principal stress occurs. The local ground stress field is changed due to the initiation and propagation of hydraulic fractures. The propagation direction of the fractures between the fracturing boreholes will be deflected. A fracture propagation pressure that is greater than the minimum principle stress and a tension field that is induced in the leading edge of the fracture end, will aid to fracture intersection; as a result, the possibility of connecting the boreholes will increase.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Xin Cai ◽  
Wei Liu

Abstract Hydraulic fracturing experiments with low-viscosity fluids, such as supercritical CO2, demonstrate the formation of complex fracture networks spread throughout the rocks. To study the influence of viscosity of the fracturing fluids on hydraulic fracture propagation, a hydromechanical-coupled cohesive zone model is proposed for the simulation of mechanical response of rock grains boundary separation. This simulation methodology considers the synergistic effects of unsteady flow in fracture and rock grain deformation induced by hydraulic pressure. The simulation results indicate a tendency of complex fracture propagation with more branches as the viscosity of fracturing fluids decrease, which is in accord with experimental results. The low-viscosity fluid can flow into the microfractures with extremely small aperture and create more shear failed fracture. This study confirms the possibility of effective well stimulations by hydraulic fracturing with low-viscosity fluids.


2021 ◽  
Author(s):  
Somnath Mondal ◽  
Min Zhang ◽  
Paul Huckabee ◽  
Gustavo Ugueto ◽  
Raymond Jones ◽  
...  

Abstract This paper presents advancements in step-down-test (SDT) interpretation to better design perforation clusters. The methods provided here allow us to better estimate the pressure drop in perforations and near-wellbore tortuosity in hydraulic fracturing treatments. Data is presented from field tests from fracturing stages with different completion architectures across multiple basins including Permian Delaware, Vaca Muerta, Montney, and Utica. The sensitivity of near-wellbore pressure drops and perforation size on stimulation distribution effectiveness in plug-and-perf (PnP) treatments is modeled using a coupled hydraulic fracturing simulator. This advanced analysis of SDT data enables us to improve stimulation distribution effectiveness in multi-cluster or multiple entry completions. This analysis goes much further than the methodology presented in URTeC2019-1141 and additional examples are presented to illustrate its advantages. In a typical SDT, the injection flowrate is reduced in four or five abrupt decrements or "steps", each with a duration long enough for the rate and pressure to stabilize. The pressure-rate response is used to estimate the magnitude of perforation efficiency and near-wellbore tortuosity. In this paper, two SDTs with clean fluids were conducted in each stage - one before and another after proppant slurry was injected. SDTs were conducted in cemented single-point entry (cSPE) sleeves, which present a unique opportunity to measure only near-wellbore tortuosity using bottom-hole pressure gauge at sleeve depth, negligible perforation pressure drops, and less uncertainty in interpretation. SDTs were conducted in PnP stages in multiple unconventional basins. The results from one set of PnP stages with optic fiber distributed sensing were modeled with a hydraulic fracturing simulator that combines wellbore proppant transport, perforation size growth, near-wellbore pressure drop, and hydraulic fracture propagation. Past SDT analysis assumed that the pressure drop due to near-wellbore tortuosity is proportional to the flow rate raised to an exponent, β = 0.5, which typically overestimates perforation friction from SDTs. Theoretical derivations show that β is related to the geometry and flow type in the near-wellbore region. Results show that initial β (before proppant slurry) is typically around 0.5, but the final value of β (after proppant slurry) is approximately 1, likely due to the erosion of near-wellbore tortuosity by the proppant slurry. The new methodology incorporates the increase in β due proppant slurry erosion. Hydraulic fracturing modeling, calibrated with optic fiber data, demonstrates that the stimulation distribution effectiveness must consider the interdependence of proppant segregation in the wellbore, perforation erosion, and near-wellbore tortuosity. An improved methodology is presented to quantify the magnitude of perforation and near-wellbore tortuosity related pressure drops before and after pumping of proppant slurry in typical PnP hydraulic fracture stimulations. The workflow presented here shows how the uncertainties in the magnitude of near-wellbore complexity and perforation size, along with uncertainties in hydraulic fracture propagation parameters, can be incorporated in perforation cluster design.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2026-2040 ◽  
Author(s):  
Xiaojiang Li ◽  
Gensheng Li ◽  
Wei Yu ◽  
Haizhu Wang ◽  
Kamy Sepehrnoori ◽  
...  

Summary Liquid/supercritical carbon dioxide (L/SC-CO2) fracturing is an emerging technology for shale gas development because it can effectively overcome problems related to clay swelling and water scarcity. Recent applications show that L/SC-CO2 fracturing can induce variations in temperature. Understanding of this phenomenon is rudimentary and needs to be carefully addressed to improve the understanding of CO2 thermodynamic behavior, and thus helps to optimize CO2 fracturing in the field. In this paper, we develop a numerical model to assess the impact of thermal effect on fracture initiation during CO2 fracturing. The model couples fluid flow and heat transfer in the fracture, and is verified by a peer-reviewed solution and observation in laboratory experiments. The velocity, pressure, and temperature are calculated at various time to demonstrate the thermodynamic behavior during fracture initiation. A pseudo shock wave is observed, associated with a compression wave and an expansion wave, which finally leads to an increase in temperature in the new fracture and a decrease in temperature in the initial fracture. The thermal stress is derived to investigate the difference between hydraulic fracturing and CO2 fracturing. The results show that thermal stress, resulting from CO2 fracturing initiation, is comparable to the rock strength, which will help induce microfractures, and thus promote the fracture complexity. The formation pressure after CO2 fracturing is also calculated to evaluate the pressure-buildup potential. This work highlights the importance of CO2 expansion during and after fracturing. It is one of the unique features that differs from hydraulic fracturing. For field-design recommendations, to enhance the thermal effect of CO2 fracturing, it is a good strategy to pump CO2 at high pressure and low temperature into the reservoirs with high Young's modulus, low Poisson's ratio, low permeability, and high geothermal temperature (or large depth). This paper does not address the dynamics of fracture propagation under the influence of thermal effect. Rather, it intends to demonstrate the potential of the thermal effect of CO2 fluid in assisting the fracture propagation, and the importance of incorporating the compressibility of CO2 into fracture modeling and operation design. Failing to account for this thermal effect might underestimate the fracture complexity and stimulated reservoir volume.


2020 ◽  
Vol 10 (3) ◽  
pp. 1153 ◽  
Author(s):  
Shirong Cao ◽  
Xiyuan Li ◽  
Zhe Zhou ◽  
Yingwei Wang ◽  
Hong Ding

Coalbed methane is not only a clean energy source, but also a major problem affecting the efficient production of coal mines. Hydraulic fracturing is an effective technology for enhancing the coal seam permeability to achieve the efficient extraction of methane. This study investigated the effect of a coal seam reservoir’s geological factors on the initiation pressure and fracture propagation. Through theoretical analysis, a multi-layered coal seam initiation pressure calculation model was established based on the broken failure criterion of maximum tensile stress theory. Laboratory experiments were carried out to investigate the effects of the coal seam stress and coal seam dip angle on the crack initiation pressure and fracture propagation. The results reveal that the multi-layered coal seam hydraulic fracturing initiation pressure did not change with the coal seam inclination when the burial depth was the same. When the dip angle was the same, the initiation pressure linearly increased with the reservoir depth. A three-dimensional model was established to simulate the actual hydraulic fracturing crack propagation in multi-layered coal seams. The results reveal that the hydraulic crack propagated along the direction of the maximum principal stress and opened in the direction of the minimum principal stress. As the burial depth of the reservoir increased, the width of the hydraulic crack also increased. This study can provide the theoretical foundation for the effective implementation of hydraulic fracturing in multi-layered coal seams.


1984 ◽  
Vol 24 (03) ◽  
pp. 256-268 ◽  
Author(s):  
W.L. Medlin ◽  
L. Masse

Abstract This paper describes fracturing experiments in dry blocks of various rock materials. The results have application to evaluation of hydraulic fracturing theories. The block dimensions were 3 in.×4 in.×12 in. [7.6 cm×10.2 cm×30.5 cm] with metal plates epoxied to the 3-in.×12-in. [7.6-cm×30.5-cm] faces. Remaining faces were coated with soft epoxy to provide an impermeable jacket. The blocks were loaded in a pressure cell with an upper movable piston bearing on the 3-in.×4-in. [7.6-cm×10.2-cm] faces. A servo-controlled press applied constant stress to these faces higher than a lateral confining stress applied by oil pressure. Fractures were initiated by injection of various fluids into a small notch located on a center plane parallel to the 4-in.×12-in. [10.2-cm×30.5-cm] faces. Fracture growth along the same plane was assured by the stress conditions. Use of these experiments to test theories of fracture propagation required measurement of three variables, fracture width bi, and propagation pressure pi at the notch entrance, and fracture length, L. bi was determined by a capacitance method, and pi was measured directly by a pressure transducer. L was measured by two methods - either ultrasonic signals or pressure pulses generated in miniature cavities. The ultrasonic method confirmed the existence of a Barenblatt liquid-free crack ahead of the liquid front whose relative length decreased with confining stress. The metal plates bonded to the 3-in.×4-in. [7.6-cm×10.2-cm] faces prevented slip at the top and bottom of the fracture, giving a three-dimensional (3D) crack of constant height. However, the bi, pi, and L data followed trends predicted by two-dimensional (2D) (plane strain) elastic theory reasonably well. Fracture closure measurements after shut-in showed an initial period of leakoff-controlled closure and a final period of creep-controlled closure. A pi slope change at the transition is identified with the instantaneous shut-in pressure (ISIP) in field records and is higher than the true confining stress. Introduction Methods of predicting crack dimensions during fracturing operations are essential to proper design of field treatments. Many fracture-propagation theories have been advanced. Contributions have been made by Barenblatt,1 Khristianovitch and Zheltov,4,5 Howard and Fast,6 Perkins and Kern,7 LeTirant and Dupuy,8 Nordgren,9 Geertsma and de Klerk,10 Daneshy,11 and Cleary12,13 among others. However, practical methods of evaluating the theoretical work have been few. Mostly they have been. limited to indirect and generally inconclusive field evaluations. The Sandia mineback experiments14–16 have provided more direct evaluations. However, even here important fracturing parameters are uncontrolled or unknown. This paper describes laboratory-scale hydraulic fracturing experiments that provide critical data for evaluating crack propagation theories. In these experiments we measured the fundamental variables of crack growth under controlled conditions with known fracturing parameters. Experimental Methods All fracturing experiments were carried out in dry blocks 3 in.×4 in.×12 in. [7.6 cm×10.2 cm×30.5 cm] in size. Mesa Verde sandstone and Carthage and Lueders limestone were used as sample materials. Scaling considerations were important. It was necessary to scale down injection rate and leakoff to be consistent with fracture dimensions. The scaling factor of importance was taken to be fluid efficiency, the ratio of crack volume to injected volume. This factor was controlled through appropriate combinations of sample permeability and fracturing fluid viscosity. As fracturing fluids we used thick grease, hydraulic oils of various viscosities, and gelled kerosene (Dowell's YFGO™). Fluid efficiencies ranged from 3 to 70%. Most experiments were conducted at efficiencies between 30 and 50 %, a range typical of most field treatments. Fig. 1 shows the experimental arrangement. Shaped aluminum plates were bonded with Hysol clear epoxy to the 3-in.×12-in. [7.6-cm×30.5-cm] faces of the sample block as shown. The remaining faces were coated with a thin layer of the same epoxy to provide an impermeable jacket for confining pressure. One of the aluminum plates contained an injection port communicating with a 1.4-in. [0.64-cm] borehole as illustrated. A pair of brass plates with faces 0.2 in.×0.5 in. [0.5 cm×1.3 cm] was epoxied into the borehole at its center. These plates, separated by a gap of 0.01 in. [0.025 cm] served as a parallel plate capacitor. They were connected to a capacitance bridge that detected changes in gap width through changes in capacitance. This provided a direct, continuous measurement of fracture width at the borehole.


Sign in / Sign up

Export Citation Format

Share Document