Importance of Geological and Rock Physics Prior Information for Lithology and Pore Fluid Estimation from Inverted Seismic Data: Exploration in a Turbidite Reservoir Case Study

Author(s):  
Ezequiel F. Gonzalez ◽  
Stephane Gesbert ◽  
Ronny Hofmann
2020 ◽  
Vol 39 (3) ◽  
pp. 176-181
Author(s):  
Jun Liu ◽  
Donghai Liang ◽  
Guangrong Peng ◽  
Xiaomin Ruan ◽  
Yingwei Li ◽  
...  

In the Enping 17 sag within the Pearl River Mouth Basin in the South China Sea, one wildcat well has been drilled to the Lower Paleogene Enping Formation (FM EP) and partially into the Wenchang Formation (FM WC) for deep formation hydrocarbon exploration. However, no commercial play was discovered. The reasons for this are clear if the petroleum systems modeling is examined. In FM EP, the main reason for failure is due to poor sealing. In FM WC, the failure is due to the lack of a good reservoir for hydrocarbon accumulation. Encountering a 9 m thick reservoir at a depth of 4650 m indicates that braided fluvial delta and lowstand turbidite sandstone may develop in FM WC. With the objective of establishing cap rock in FM EP and reservoir rock in FM WC, and in the absence of sufficient well data, an integrated framework for 3D seismic reservoir characterization of offshore deep and thin layers was developed. The workflow includes seismic data reprocessing, well-log-based rock-physics analysis, seismic structure interpretation, simultaneous amplitude variation with offset (AVO) inversion, 3D lithology prediction, and geologic integrated analysis. We present four key solutions to address four specific challenges in this case study: (1) the application of adaptive deghosting techniques to remove the source and streamer depth-related ghost notches in the seismic data bandwidth and the relative amplitude-preserved bandwidth extension technique to improve the seismic data resolution; (2) a practical rock-physics modeling approach to consider the formation overpressure for pseudoshear sonic log prediction; (3) interactive and synchronized workflow between prestack 3D AVO inversion and seismic processing to predict a 9 m thick layer in FM WC through more than 60 rounds of cyclic tests; and (4) cross validation between seismic qualitative attributes and quantitative inversion results to verify the lithology prediction result under the condition of insufficient well data.


Geophysics ◽  
1998 ◽  
Vol 63 (6) ◽  
pp. 1997-2008 ◽  
Author(s):  
Gary Mavko ◽  
Tapan Mukerji

We present a strategy for quantifying uncertainties in rock physics interpretations by combining statistical techniques with deterministic rock physics relations derived from the laboratory and theory. A simple example combines Gassmann’s deterministic equation for fluid substitution with statistics inferred from log, core, and seismic data to detect hydrocarbons from observed seismic velocities. The formulation identifies the most likely pore fluid modulus corresponding to each observed seismic attribute and the uncertainty that arises because of natural variability in formation properties, in addition to the measurement uncertainties. We quantify the measure of information in terms of entropy and show the impact of additional data about S-wave velocity on the uncertainty of the hydrocarbon indicator. In some cases, noisy S data along with noisy P data can convey more information than perfect P data alone, while in other cases S data do not reduce the uncertainty. We apply the formulation to a well log example for detecting the most likely pore fluid and quantifying the associated uncertainty from observed sonic and density logs. The formulation offers a convenient way to implement deterministic fluid substitution equations in the realistic case when natural geologic variations cause the reference porosity and velocity to span a range of values.


2008 ◽  
Vol 48 (1) ◽  
pp. 31 ◽  
Author(s):  
Matthew Lamont ◽  
Troy Thompson ◽  
Carlo Bevilacqua

The aim of quantitative interpretation (QI) is to predict lithology and fluid content away from the well bore. This process should make use of all available data, not well and seismic data in isolation. Geological insight contributes to the selection of meaningful seismic attributes and the derivation of valid inversion products. Uncertainty must be taken into account at all stages to permit risk assessment and foster confidence in the predictions. The use of the Bayesian framework enables prior knowledge, such as a geological model, to be incorporated into a probabilistic prediction, which captures uncertainty and quantifies risk. Nostradamus is a fluid and lithology prediction toolkit that forms part of a comprehensive QI workflow. It utilises a Bayesian classification scheme to make quantitative predictions based upon inverted seismic data and depth-dependent, stochastic rock physics models. The process generates lithology and fluid probability volumes. All available information is combined using geological knowledge to create a realistic pre-drill model. Separately, stochastically modelled multidimensional crossplots, which account for the uncertainty in the rock and fluid properties (based on petrophysical analyses of well data), are used to build probability density functions such as acoustic impedance (AI) vs Vp/Vs and LambdaRho vs MuRho. These are then compared to crossplots of equivalent inverted data to make predictions and quantitatively update the geological model. Individual probability volumes as well as a most-likely lithology and fluid volume are generated. This paper presents a case study in the Carnarvon Basin that successfully predicts fluids and lithologies away from well control in a way that effectively quantifies risk and reserves. Two of the three successful gas exploration wells were drilled close to dry holes.


2009 ◽  
Author(s):  
Peter Harris ◽  
Zhijun Du ◽  
Harald H. Soleng ◽  
Lucy M. MacGregor ◽  
Wiebke Olsen
Keyword(s):  

Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 42-46 ◽  
Author(s):  
John P. Castagna

An objective of seismic analysis is to quantitatively extract lithology, porosity, and pore fluid content directly from seismic data. Rock physics provides the fundamental basis for seismic lithology determination. Beyond conventional poststack inversion, the most important seismic lithologic analysis tool is amplitude‐variation‐with‐offset (AVO) analysis. In this paper, I review recent progress in these two key aspects of seismic lithologic analysis.


Sign in / Sign up

Export Citation Format

Share Document