Fast Least-Squares Reverse Time Migration Via Approximating the Hessian as the Sum of Kronecker Products

Author(s):  
W. Gao ◽  
G. Mathura ◽  
M. Sacchi
Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. S115-S134
Author(s):  
Wenlei Gao ◽  
Gian Matharu ◽  
Mauricio D. Sacchi

Least-squares reverse time migration (LSRTM) has become increasingly popular for complex wavefield imaging due to its ability to equalize image amplitudes, attenuate migration artifacts, handle incomplete and noisy data, and improve spatial resolution. The major drawback of LSRTM is the considerable computational cost incurred by performing migration/demigration at each iteration of the optimization. To ameliorate the computational cost, we introduced a fast method to solve the LSRTM problem in the image domain. Our method is based on a new factorization that approximates the Hessian using a superposition of Kronecker products. The Kronecker factors are small matrices relative to the size of the Hessian. Crucially, the factorization is able to honor the characteristic block-band structure of the Hessian. We have developed a computationally efficient algorithm to estimate the Kronecker factors via low-rank matrix completion. The completion algorithm uses only a small percentage of preferentially sampled elements of the Hessian matrix. Element sampling requires computation of the source and receiver Green’s functions but avoids explicitly constructing the entire Hessian. Our Kronecker-based factorization leads to an imaging technique that we name Kronecker-LSRTM (KLSRTM). The iterative solution of the image-domain KLSRTM is fast because we replace computationally expensive migration/demigration operations with fast matrix multiplications involving small matrices. We first validate the efficacy of our method by explicitly computing the Hessian for a small problem. Subsequent 2D numerical tests compare LSRTM with KLSRTM for several benchmark models. We observe that KLSRTM achieves near-identical images to LSRTM at a significantly reduced computational cost (approximately 5–15× faster); however, KLSRTM has an increased, yet manageable, memory cost.


Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.


Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. S33-S46 ◽  
Author(s):  
Chuang Li ◽  
Jianping Huang ◽  
Zhenchun Li ◽  
Rongrong Wang

This study derives a preconditioned stochastic conjugate gradient (CG) method that combines stochastic optimization with singular spectrum analysis (SSA) denoising to improve the efficiency and image quality of plane-wave least-squares reverse time migration (PLSRTM). This method reduces the computational costs of PLSRTM by applying a controlled group-sampling method to a sufficiently large number of plane-wave sections and accelerates the convergence using a hybrid of stochastic descent (SD) iteration and CG iteration. However, the group sampling also produces aliasing artifacts in the migration results. We use SSA denoising as a preconditioner to remove the artifacts. Moreover, we implement the preconditioning on the take-off angle-domain common-image gathers (CIGs) for better results. We conduct numerical tests using the Marmousi model and Sigsbee2A salt model and compare the results of this method with those of the SD method and the CG method. The results demonstrate that our method efficiently eliminates the artifacts and produces high-quality images and CIGs.


2017 ◽  
Author(s):  
Bruno Pereira-Dias ◽  
André Bulcão ◽  
Djalma Soares Filho ◽  
Roberto Dias ◽  
Felipe Duarte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document