Estimation Inverse Velocity Section Response on Seismic Wavefield

Author(s):  
V.V. Romanov ◽  
V.I. Ryzhkov ◽  
K.S Sergeev
2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Takuto Maeda ◽  
Kiwamu Nishida ◽  
Ryota Takagi ◽  
Kazushige Obara
Keyword(s):  

2021 ◽  
Author(s):  
Martina Rosskopf ◽  
Eva P. S. Eibl ◽  
Gilda Currenti ◽  
Philippe Jousset ◽  
Joachim Wassermann ◽  
...  

<p>The field of rotational seismology has only recently emerged. Portable 3 component rotational sensors are commercially available since a few years which opens the pathway for a first use in volcano-seismology. The combination of rotational and translational components of the wavefield allows identifying and filtering for specific seismic wave types, estimating the back azimuth of an earthquake, and calculating local seismic phase velocities.</p><p>Our work focuses on back-azimuth calculations of volcano-tectonic and long-period events detected at Etna volcano in Italy. Therefore, a continuous full seismic wavefield of 30 days was recorded by a BlueSeis-3A, the first portable rotational sensor, and a broadband Trillium Compact seismometer located next to each other at Mount Etna in August and September of 2019. In this study, we applied two methods for back-azimuth calculations. The first one is based on the similarity of the vertical rotation rate to the horizontal acceleration and the second one uses a polarization analysis from the two horizontal components of the rotation rate. The estimated back-azimuths for volcano-tectonic events were compared to theoretical back-azimuths based on the INGV event catalog and the long-period event back-azimuths were analyzed for their dominant directions. We discuss the quality of our back azimuths with respect to event locations and evaluate the sensitivity and benefits of the rotational sensor focusing on volcano-seismic events on Etna regarding the signal to noise ratios, locations, distances, and magnitudes.</p>


Author(s):  
Yiran Jiang ◽  
Jieyuan Ning ◽  
Jingchong Wen ◽  
Yongxiang Shi

Author(s):  
Martin Lott ◽  
Philippe Roux ◽  
Stéphane Garambois ◽  
Philippe Guéguen ◽  
Andrea Colombi

Abstract The METAFORET experiment was designed to demonstrate that complex wave physics phenomena classically observed at the meso- and micro-scales in acoustics and in optics also apply at the geophysics scale. In particular, the experiment shows that a dense forest of trees can behave as a locally resonant metamaterial for seismic surface waves. The dense arrangement of trees anchored into the ground creates anomalous dispersion curves for surface waves, which highlight a large frequency band-gap around one resonant frequency of the trees, at ∼45 Hz. This demonstration is carried out through the deployment of a dense seismic array of ∼1000 autonomous geophones providing seismic recordings under vibrating source excitation at the transition between an open field and a forest. Additional geophysical equipment was deployed (e.g. ground-penetrating radar, velocimeters on trees) to provide essential complementary measurements. Insights and interpretations on the observed seismic wavefield, including the attenuation length, the intensity ratio between the field and the forest and the surface wave polarization, are validated with 2D numerical simulations of trees over a layered halfspace.


2013 ◽  
Vol 353-356 ◽  
pp. 1858-1866
Author(s):  
Wu Jian Yan ◽  
Yu Cheng Shi

In this paper, we simulated two-dimension numerical on the strong ground motion through the hybrid scheme based on the pseudo-spectral method (PSM) and finite difference method (FDM). We based on the same focal depth, and 2 different thick deposition layers are used as models to analyze the relationship between site situation and the peak displacement of strong ground motion. The results show that the hybrid PSM/FDM method for seismic wavefield simulation combines with advantages of the pseudospectral method and the finite difference method and makes up for the disadvantage of the pseudospectral method and the finite difference method, so this method can process well the calculation of the discontinuous medium surface, then the calculation accuracy is similar to the pseudospectral method. Through the wavefield simulation it is known that the range of the seismic wavefield the peak ground displacement (PGD) of the thicker deposition is larger and the influence of the secondary surface wave at the basin edge is more obvious. The thicker deposition amplitude of strong ground motion in the basin is larger and the duration is longer, and the reflected wave of which is more obvious and stronger. However, the difference of the site condition has little influence to strong ground motion in the horizontal direction.


1996 ◽  
Vol 39 (2) ◽  
Author(s):  
D. Seidl ◽  
M. Hellweg ◽  
P. Okubo ◽  
H. Rademacher

The seismic wavefield near an active volcanic vent consists of superimposed signals in a wide range of frequency bands from sources inside and outside the volcano. To characterize the broadband wavefield near Puu Oo, we deployed a profile of three three-component broadband sensors in a 200 m long line about 1.5 km WSW of the active vent. During this period, Puu Oo maintained a constant, but very low level of activity. The digital data logger recorded the wavefield continuously in the frequency band between 0.01 and 40 Hz between June 25 and July 9, 1994. At the same time, local wind conditions along with air temperature and pressure were monitored by a portable digital weather station. On the basis of characteristic elements, such as waveform, spatial coherence between stations, particle motion and power spectra, the wavefield can be divided into three bands. The dominant signals in the frequency band between 0.01 and 0.1 Hz are not coherent among the stations. Their ground velocities correlate with the wind speed. The signals in the 0.1 to 0.5 Hz band are coherent across the profile and most probably represent a superposition of volcanic tremor and microseisms from the Pacific Ocean. Much of the energy above 0.5 Hz can be attributed to activity at the vent. Power spectra from recordings of the transverse components show complex peaks between 0.5 and 3 Hz which vary in amplitude due to site effects and distance. On the other hand, power spectra calculated from the radial components show a clearly periodic pattern of peaks at 1 Hz intervals for some time segments. A further remarkable feature of the power spectra is that they are highly stationary.


Sign in / Sign up

Export Citation Format

Share Document