CLEVER

Author(s):  
Francesco Tusa ◽  
Maurizio Paone ◽  
Massimo Villari

This chapter describes both the design and architecture of the CLEVER cloud middleware, pointing out the possibilities it offers towards enlarging the concept of federation in more directions. CLEVER is able to accomplish such an enlargement enabling the interaction among whatever type of electronic device connected to Internet, thus offering the opportunity of implementing the Internet of Things. Together with this type of perspective, CLEVER aims to “aggregate” heterogeneous computing infrastructure by putting together Cloud and Grid, as an example. The chapter starts with a description of the cloud projects related to CLEVER, followed by a discussion on the middleware components that mainly focuses on the innovative features they have, in particular the communication mechanisms adopted. The second part of the chapter presents a real use case that exploits the CLEVER features that allow easy creation of federated clouds’ infrastructures that can be also based on integration with existing Grids; it is demonstrated thanks to the “oneshot” CLEVER deploying mechanism. It is possible to scale dynamically the cloud resources by taking advantage of the existing Grid infrastructures, and minimizing the changes needed at the involved management middleware.

Author(s):  
Konstantinos Kotis ◽  
Artem Katasonov

Internet of Things should be able to integrate an extremely large amount of distributed and heterogeneous entities. To tackle heterogeneity, these entities will need to be consistently and formally represented and managed (registered, aligned, composed and queried) trough suitable abstraction technologies. Two distinct types of these entities are a) sensing/actuating devices that observe some features of interest or act on some other entities (call it ‘smart entities’), and b) applications that utilize the data sensed from or sent to the smart entities (call it ‘control entities’). The aim of this paper is to present the Semantic Smart Gateway Framework for supporting semantic interoperability between these types of heterogeneous IoT entities. More specifically, the paper describes an ontology as the key technology for the abstraction and semantic registration of these entities, towards supporting their automated deployment. The paper also described the alignment of IoT entities and of their exchanged messages. More important, the paper presents a use case scenario and a proof-of-concept implementation.


Author(s):  
Bill Karakostas

To improve the overall impact of the Internet of Things (IoT), intelligent capabilities must be developed at the edge of the IoT ‘Cloud.' ‘Smart' IoT objects must not only communicate with their environment, but also use embedded knowledge to interpret signals, and by making inferences augment their knowledge of their own state and that of their environment. Thus, intelligent IoT objects must improve their capabilities to make autonomous decisions without reliance to external computing infrastructure. In this chapter, we illustrate the concept of smart autonomous logistic objects with a proof of concept prototype built using an embedded version of the Prolog language, running on a Raspberry Pi credit-card-sized single-board computer to which an RFID reader is attached. The intelligent object is combining the RFID readings from its environment with embedded knowledge to infer new knowledge about its status. We test the system performance in a simulated environment consisting of logistics objects.


Author(s):  
Arun Kumar ◽  
Sharad Sharma

<p>The number of robotics used globally is gradually growing, according to a variety of research. They are becoming more and more popular in different workplaces, like manufacturing, distribution, medical conditions, military, inaccessible areas, etc. The internet of things (IoT) and robotics groups have until now been guided by a set of, but somewhat compatible, goals, which are mainly to help knowledge systems in the field of general sensing, tracking, and monitoring. Therefore, the development of an internet of robotic things (IoRT), which incorporates the outcome from both cultures, is progressively said to have a significant added benefit. Internet of robotic things, the intersection of the Internet of Things and robotics, is where self-sufficient machines will assemble information from various sensors and speak with one another to perform errands including basic reasoning. As the name suggests, IoRT is the combination of two front-line innovations, the internet of things and robotics. People can manage any electronic device in homes with IoT and can also be used in contactless applications in healthcare. The constrained application protocol (CoAP), for the management and control of a community of homogeneous sensor modules, has recently endorsed multicast communications in IoRT. It will boost connectivity performance, less power consumption due to data aggregation, and enhanced security features with DTLS security features for various applications for the internet of things. This paper presents an implementation of the CoAP framework on IoRT sky motes using the Contiki Cooja Simulator that will be a useful healthcare sector that will confirm their potential and therefore, new research directions are outlined</p>


Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1231 ◽  
Author(s):  
Davide Pedrini ◽  
Mauro Migliardi ◽  
Carlo Ferrari ◽  
Alessio Merlo

Recently blockchain technology has been advocated as a solution fitting many different problems in several applicative fields; among these fields there is the Internet of Things (IoT) too. In this paper we show the most significant properties of a blockchain, how they suite the use case of a cryptocurrency and how they map onto the needs of IoT systems. We claim that a blockchain does not provide a significant advantage with respect to other database technologies in a field such as Internet of Things where computational power comes at a premium, energy is often scarce and storage scalability is a major challenge.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 304 ◽  
Author(s):  
Rus-Casas C. ◽  
Hontoria L. ◽  
Fernández-Carrasco J.I. ◽  
Jiménez-Castillo G. ◽  
Muñoz-Rodríguez F.

In order to develop future projects in the field of photovoltaic solar energy, it is essential to accurately know the potential solar resources. There are many methods to estimate the incident solar radiation in a certain place. However, most of them are very expensive or do not have the ideal characteristics for good monitoring of a particular photovoltaic installation. For these reasons, an electronic device connected to the internet of things (IoT) is presented in this paper which manages to measure global radiation in photovoltaic applications. The device developed has been patented in the Spanish Patent and Trademark Office. It presents some features that make it very suitable to measure photovoltaic installations with the advantage of being a low cost and very reliable device. The device has been tested to determine global horizontal irradiance obtaining a correlation coefficient R2 = 0.994.


Author(s):  
Bill Karakostas

To improve the overall impact of the Internet of Things (IoT), intelligent capabilities must be developed at the edge of the IoT ‘Cloud.' ‘Smart' IoT objects must not only communicate with their environment, but also use embedded knowledge to interpret signals, and by making inferences augment their knowledge of their own state and that of their environment. Thus, intelligent IoT objects must improve their capabilities to make autonomous decisions without reliance to external computing infrastructure. In this chapter, we illustrate the concept of smart autonomous logistic objects with a proof of concept prototype built using an embedded version of the Prolog language, running on a Raspberry Pi credit-card-sized single-board computer to which an RFID reader is attached. The intelligent object is combining the RFID readings from its environment with embedded knowledge to infer new knowledge about its status. We test the system performance in a simulated environment consisting of logistics objects.


Author(s):  
Juan Vera del Campo ◽  
Josep Pegueroles ◽  
Juan Hernández Serrano ◽  
Miguel Soriano

2017 ◽  
Vol 4 (5) ◽  
pp. 1583-1596 ◽  
Author(s):  
Ammar Gharaibeh ◽  
Abdallah Khreishah ◽  
Mehdi Mohammadi ◽  
Ala Al-Fuqaha ◽  
Issa Khalil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document