Generative Group Activity Analysis with Quaternion Descriptor

Author(s):  
Guangyu Zhu ◽  
Shuicheng Yan ◽  
Tony X. Han ◽  
Changsheng Xu

Activity understanding plays an essential role in video content analysis and remains a challenging open problem. Most of previous research is limited due to the use of excessively localized features without sufficiently encapsulating the interaction context or focus on simply discriminative models but totally ignoring the interaction patterns. In this chapter, a new approach is proposed to recognize human group activities. Firstly, the authors designed a new quaternion descriptor to describe the interactive insight of activities regarding the appearance, dynamic, causality, and feedback, respectively. The designed descriptor along with the conventional velocity and position are capable of delineating the individual and pairwise interactions in the activities. Secondly, considering both activity category and interaction variety, the authors propose an extended pLSA (probabilistic Latent Semantic Analysis) model with two hidden variables. This extended probabilistic graphic paradigm constructed on the quaternion descriptors facilitates the effective inference of activity categories as well as the exploration of activity interaction patterns. The extensive experiments on realistic movie and human group activity datasets validate that the multilevel features are effective for activity interaction representation and demonstrate that the graphic model is a promising paradigm for activity recognition.

2020 ◽  
Vol 10 (3) ◽  
pp. 1125 ◽  
Author(s):  
Kai-Xu Han ◽  
Wei Chien ◽  
Chien-Ching Chiu ◽  
Yu-Ting Cheng

At present, in the mainstream sentiment analysis methods represented by the Support Vector Machine, the vocabulary and the latent semantic information involved in the text are not well considered, and sentiment analysis of text is dependent overly on the statistics of sentiment words. Thus, a Fisher kernel function based on Probabilistic Latent Semantic Analysis is proposed in this paper for sentiment analysis by Support Vector Machine. The Fisher kernel function based on the model is derived from the Probabilistic Latent Semantic Analysis model. By means of this method, latent semantic information involving the probability characteristics can be used as the classification characteristics, along with the improvement of the effect of classification for support vector machine, and the problem of ignoring the latent semantic characteristics in text sentiment analysis can be addressed. The results show that the effect of the method proposed in this paper, compared with the comparison method, is obviously improved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qing Yao ◽  
Bingsheng Chen ◽  
Tim S. Evans ◽  
Kim Christensen

AbstractWe study the evolution of networks through ‘triplets’—three-node graphlets. We develop a method to compute a transition matrix to describe the evolution of triplets in temporal networks. To identify the importance of higher-order interactions in the evolution of networks, we compare both artificial and real-world data to a model based on pairwise interactions only. The significant differences between the computed matrix and the calculated matrix from the fitted parameters demonstrate that non-pairwise interactions exist for various real-world systems in space and time, such as our data sets. Furthermore, this also reveals that different patterns of higher-order interaction are involved in different real-world situations. To test our approach, we then use these transition matrices as the basis of a link prediction algorithm. We investigate our algorithm’s performance on four temporal networks, comparing our approach against ten other link prediction methods. Our results show that higher-order interactions in both space and time play a crucial role in the evolution of networks as we find our method, along with two other methods based on non-local interactions, give the best overall performance. The results also confirm the concept that the higher-order interaction patterns, i.e., triplet dynamics, can help us understand and predict the evolution of different real-world systems.


Sign in / Sign up

Export Citation Format

Share Document