Basic Methods for Analysis of High Frequency Transients in Power Apparatus Windings

Author(s):  
Juan A. Martinez-Velasco

Power apparatus windings are subjected to voltage surges arising from transient events in power systems. High frequency surges that reach windings can cause high voltage stresses, which are usually concentrated in the sections near to the line end, or produce part-winding resonance, which can create high oscillatory voltages. Determining the transient voltage response of power apparatus windings to high frequency surges is generally achieved by means of a model of the winding structure and some computer solution method. The accurate prediction of winding and coil response to steep-fronted voltage surges is a complex problem for several reasons: the form of excitation may greatly vary with the source of the transient, and the representation of the winding depends on the input frequency and its geometry. This chapter introduces the most basic models used to date for analyzing the response of power apparatus windings to steep-fronted voltage surges. These models can be broadly classified into two groups: (i) models for determining the internal voltage distribution and (ii) models for representing a power apparatus seen from its terminals.

Author(s):  
Dmitri Vinnikov ◽  
Tanel Jalakas ◽  
Indrek Roasto

Analysis and Design of 3.3 kV IGBT Based Three-Level DC/DC Converter with High-Frequency Isolation and Current Doubler RectifierThe paper presents the findings of a R&D project connected to the development of auxiliary power supply (APS) for the high-voltage DC-fed rolling stock applications. The aim was to design a new-generation power converter utilizing high-voltage IGBT modules, which can outpace the predecessors in terms of power density, i.e. to provide more power for smaller volumetric space. The topology proposed is 3.3 kV IGBT-based three-level neutral point clamped (NPC) half-bridge with high-frequency isolation transformer and current doubler rectifier that fulfils all the targets imposed by the designers. Despite an increased component count the proposed converter is very simple in design and operation. The paper provides an overview of the design with several recommendations and guidelines. Moreover, the simulation and experimental results are discussed and the performance evaluation of the proposed converter is presented.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 23786-23794
Author(s):  
Abhishek Kar ◽  
Mitiko Miura-Mattausch ◽  
Mainak Sengupta ◽  
Dondee Navaroo ◽  
Hideyuki Kikuchihara ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 909
Author(s):  
David W. Upton ◽  
Keyur K. Mistry ◽  
Peter J. Mather ◽  
Zaharias D. Zaharis ◽  
Robert C. Atkinson ◽  
...  

The lifespan assessment and maintenance planning of high-voltage power systems requires condition monitoring of all the operational equipment in a specific area. Electrical insulation of electrical apparatuses is prone to failure due to high electrical stresses, and thus it is a critical aspect that needs to be monitored. The ageing process of the electrical insulation in high voltage equipment may accelerate due to the occurrence of partial discharge (PD) that may in turn lead to catastrophic failures if the related defects are left untreated at an initial stage. Therefore, there is a requirement to monitor the PD levels so that an unexpected breakdown of high-voltage equipment is avoided. There are several ways of detecting PD, such as acoustic detection, optical detection, chemical detection, and radiometric detection. This paper focuses on reviewing techniques based on radiometric detection of PD, and more specifically, using received signal strength (RSS) for the localization of faults. This paper explores the advantages and disadvantages of radiometric techniques and presents an overview of a radiometric PD detection technique that uses a transistor reset integrator (TRI)-based wireless sensor network (WSN).


2007 ◽  
Vol 17 (2) ◽  
pp. 2347-2350 ◽  
Author(s):  
M. Stemmle ◽  
C. Neumann ◽  
F. Merschel ◽  
U. Schwing ◽  
K.-H. Weck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document