Supporting the Development of College-Level Students’ Conceptions of Statistical Inference

Author(s):  
Maria Meletiou-Mavrotheris

The transition from descriptive to inferential statistics is a known area of difficulty for students taking introductory statistics courses. This chapter shares the experiences from a teaching experiment in a college-level introductory statistics classroom that implemented an informal, data-driven approach to statistical inference using the dynamic statistics software Fathom© as an investigation tool. Findings from the study indicate that the informal inferences on which instruction focused in the first part of the course helped students develop understandings of fundamental aspects of inferential and argumentative reasoning that served as foundations for the formal study of inferential statistics in the latter part of the course. The affordances offered by the tool for delving deeply into the data to make sense of the situation at hand were instrumental in supporting student understanding of both informal and formal inferential statistics.

2012 ◽  
Author(s):  
Michael Ghil ◽  
Mickael D. Chekroun ◽  
Dmitri Kondrashov ◽  
Michael K. Tippett ◽  
Andrew Robertson ◽  
...  

Author(s):  
Ernest Pusateri ◽  
Bharat Ram Ambati ◽  
Elizabeth Brooks ◽  
Ondrej Platek ◽  
Donald McAllaster ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiangxu Li ◽  
Jiaxi Liu ◽  
Stanley A. Baronett ◽  
Mingfeng Liu ◽  
Lei Wang ◽  
...  

AbstractThe discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line (ring), nodal-link, nodal-chain, and nodal-net TPs in various materials and their mutual correlations. Among the phononic systems, we have predicted the hourglass nodal net TPs in TeO3, as well as the clean and single type-I Weyl TPs between the acoustic and optical branches in half-Heusler LiCaAs. In addition, we found that different types of TPs can coexist in many materials (such as ScZn). Their potential applications and experimental detections have been discussed. This work substantially increases the amount of TP materials, which enables an in-depth investigation of their structure-property relations and opens new avenues for future device design related to TPs.


Sign in / Sign up

Export Citation Format

Share Document