Diversity and Multi-Version Systems

Author(s):  
Alexander Siora ◽  
Vladimir Sklyar ◽  
Vyacheslav Kharchenko ◽  
Eugene Brezhnev

To protect safety-critical systems from common-cause failures that can lead to potentially dangerous outcomes, special methods are applied, including multi-version technologies operating at different levels of diversity. A model representing different diversity types during the development of safety-critical systems is suggested. The model addresses diversity types that are the most expedient in providing required safety. The diversity of complex electronic components (FPGA, etc.), printed circuit boards, manufacturers, specification languages, design, and program languages, etc. are considered. The challenges addressed are related to factors of scale and dependencies among diversity types, since not all combinations of used diversity are feasible. Taking these dependencies into consideration, the model simplifies the choice of diversity options. This chapter presents a cost effective approach to selection of the most diverse NPP Reactor Trip System (RTS) under uncertainty. The selection of a pair of primary and secondary RTS is named a diversity strategy. All possible strategies are evaluated on an ordinal scale with linguistic values provided by experts. These values express the expert’s degree of confidence that evaluated variants of secondary RTS are different from primary. All diversity strategies are evaluated on a set of linguistic diversity criteria, which are included into a corresponding diversity attribute. The generic fuzzy diversity score is an aggregation of the linguistic values provided by the experts to obtain a collective assessment of the secondary RTS’s similarity (difference) with a primary one. This rational diversity strategy is found during the exploitation stage, taking into consideration the fuzzy diversity score and cost.

2017 ◽  
pp. 535-592
Author(s):  
Alexander Siora ◽  
Vladimir Sklyar ◽  
Vyacheslav Kharchenko ◽  
Eugene Brezhnev

To protect safety-critical systems from common-cause failures that can lead to potentially dangerous outcomes, special methods are applied, including multi-version technologies operating at different levels of diversity. A model representing different diversity types during the development of safety-critical systems is suggested. The model addresses diversity types that are the most expedient in providing required safety. The diversity of complex electronic components (FPGA, etc.), printed circuit boards, manufacturers, specification languages, design, and program languages, etc. are considered. The challenges addressed are related to factors of scale and dependencies among diversity types, since not all combinations of used diversity are feasible. Taking these dependencies into consideration, the model simplifies the choice of diversity options. This chapter presents a cost effective approach to selection of the most diverse NPP Reactor Trip System (RTS) under uncertainty. The selection of a pair of primary and secondary RTS is named a diversity strategy. All possible strategies are evaluated on an ordinal scale with linguistic values provided by experts. These values express the expert's degree of confidence that evaluated variants of secondary RTS are different from primary. All diversity strategies are evaluated on a set of linguistic diversity criteria, which are included into a corresponding diversity attribute. The generic fuzzy diversity score is an aggregation of the linguistic values provided by the experts to obtain a collective assessment of the secondary RTS's similarity (difference) with a primary one. This rational diversity strategy is found during the exploitation stage, taking into consideration the fuzzy diversity score and cost.


Author(s):  
Ievgen Babeshko ◽  
Vyacheslav Duzhiy ◽  
Oleg Illiashenko ◽  
Alexander Siora ◽  
Vladimir Sklyar ◽  
...  

This chapter presents a cost-effective approach to selection of the most diverse NPP Reactor Trip System (RTS) under uncertainty. The selection of a pair of primary and secondary RTS is named a diversity strategy. All possible strategies are evaluated on an ordinal scale with linguistic values provided by experts. These values express the expert's degree of confidence that evaluated variants of secondary RTS are different from primary RTS. All diversity strategies are evaluated on a set of linguistic diversity criteria, which are included in a corresponding diversity attribute. The generic fuzzy diversity score is an aggregation of the linguistic values provided by the experts to obtain a collective assessment of the secondary RTS's similarity (difference) with a primary one. This most rational diversity strategy is found during the exploitation stage, taking into consideration the fuzzy diversity score and cost of each strategy.


Author(s):  
Arash Aziminejad ◽  
Andrew W. Lee

Ethernet was commercially introduced in 1980 and standardized in 1985 as IEEE 802.3. Due to the instability and unreliability of the initial introduction, safety critical systems have been slow to adapt Ethernet technologies. It is only until the Information Age brought on by the globalization of Internet in the 1990s that network gears become more cost effective, reliable, and technically suitable. With many Ethernet technologies to pick from, selection of a suitable network topology can be challenging. This paper offers insight on the problem of the optimum choice of an Ethernet technology for the purpose of safety critical system. Example of a typical CBTC system will be given along with the key design parameters and several Ethernet technologies analyzed. Simulation models are built on the basis of the two most common Ethernet technologies to provide means of comparison, and numerical results are presented in the paper.


Author(s):  
ALFS T. BERZTISS

A system is safety-critical if failure of the system would result in loss of human life, personal injury, or significant material loss. Software that supports or supplants human control of safety-critical systems has to be highly reliable, but much research remains to be done before all the reliability-related issues of safety-critical software are fully understood. We discuss a research agenda under the following headings: completeness of requirements, readability of specifications, validation tools, validation of responsiveness, verification of implementations, software robustness, common-cause failures, reuse of reliable software, the software process, and ethical issues.


2011 ◽  
Vol 31 (1) ◽  
pp. 281-285
Author(s):  
Huan HE ◽  
Zhong-wei XU ◽  
Gang YU ◽  
Shi-yu YANG

Sign in / Sign up

Export Citation Format

Share Document