Network Performance Analysis with Nonlinear Effects

The nonlinear Bit Error Rate (BER) performance of dense Wavelength Division Multiplexed (WDM) Manhattan Street Networks with deflection routing was obtained using a semi-analytical model. The chapter's results show that nonlinear effects impose significant performance penalties on dense WDM networks, both in terms of maximum hops attainable and average BER, and should be taken into account when modeling such networks. Simple techniques such as optimal amplifier positioning can mitigate some of the nonlinear penalties.

2015 ◽  
Vol 25 (2) ◽  
pp. 147
Author(s):  
Bui Trung Ninh ◽  
Nguyen Quoc Tuan ◽  
Ta Viet Hung ◽  
Nguyen The Anh ◽  
Pham Van Hoi

We present the results of investigation  for  influence of amplified spontaneous emission (ASE) noise, noise figure (NF) and  chromatic dispersion on the performance of middle-distance Dense-wavelength-division-multiplexing (DWDM) networks using low-power pumped distributed Raman amplifiers (DRAs) in two different pump configurations, i.e., forward and backward pumping. We found that the pumping configurations, ASE noise, and dispersion play an important role for improving network performance by decrease of noise figure and bit error rate (BER) of the system. Simulation results show that the lowest bit error rate and low noise figure were obtained, when using forward pumping configuration. Moreover, we have also compared ASE noise powers of the simulation with these of the experiment. These results conclude that DRA with low pump power  ($<1$~W) is the promising key technology for short-- and/or middle-distance DWDM transmission networks.


Frequenz ◽  
2018 ◽  
Vol 72 (11-12) ◽  
pp. 561-573 ◽  
Author(s):  
Vivek Kachhatiya ◽  
Shanthi Prince

Abstract In this work, we propose a sixteen channel wavelength division multiplexed passive optical network (WDM-PON) architecture which provides seamless connectivity between mobile switching center (MSC) and base transceiver stations (BTS) and also serves the fiber to the home (FTTH) users. WDM-PON based mobile backhaul network is considered to be a prime solution due to its quick deployment and reduced cost. Due to growing demand for connectivity and data transmission, the number of wavelengths are increasing day by day. The bit error rate (BER) performance is analyzed for the discrete data rates per wavelength (viz. 2.5 Gbps, 5 Gbps, 10 Gbps, 20 Gbps, and 40 Gbps) at discrete reach for 16 channel WDM-PON. The optical spectrum of sixteen channel WDM-PON is observed for different data rates at multiplexer output and the same is analyzed after fiber distance of 20 km. The fiber reach of the WDM-PON is varied, and its effect on the performance parameter like bit error rate (BER) and Quality Factor (Q-Factor) is observed on BER analyzer for the discrete data rates per wavelength. It is found that as data rate per wavelength increases, the error-free reach of the WDM-PON system decreases. Proposed WDM-PON architecture performs superior to the compared work under similar initial conditions.


2019 ◽  
Vol 9 (3) ◽  
pp. 399 ◽  
Author(s):  
Stanisław Kozdrowski ◽  
Mateusz Żotkiewicz ◽  
Sławomir Sujecki

New generation of optical nodes in dense wavelength division multiplexed networks enables operators to improve service flexibility and make significant savings, both in operational and capital expenditures. Thus the main objective of the study is to minimize optical node resources, such as transponders, multiplexers and wavelength selective switches, needed to provide and maintain high quality dense wavelength division multiplexed network services using new generation of optical nodes. A model based on integer programming is proposed, which includes a detailed description of an optical network node. The impact on the network performance of conventional reconfigurable optical add drop multiplexer technology is compared with colorless, directionless and contentionless approaches. The main focus of the presented study is the analysis of the network congestion problem arising in the context of both reconfigurable optical add drop multiplexer technologies. The analysis is supported by results of numerical experiments carried out for realistic networks of different dimensions and traffic demand sets.


The optical return-to-zero differential phase shift keying system is analyzed in this chapter to determine the accuracy of the recently proposed differential phase Q method in estimating the bit error rate. It is found that this method consistently underestimates the bit error rate though it successfully predicts the qualitative behavior of single channel and wavelength division multiplexed systems for back-to-back and point-to-point configurations. A simple modification reduced the underestimation and produced highly accurate estimation.


Author(s):  
Rochak Bajpai ◽  
Sujata Sengar ◽  
Sridhar Iyer ◽  
Shree Prakash Singh

With the steady increase in the heterogeneous Internet traffic, the optical wavelength division multiplexed (WDM) networks based on a mixed line rate (MLR) strategy have emerged as an efficient-solution. Also, with the migration from the legacy to the higher line rate(s), the advanced modulation format(s) (MF) is/are required. However, use of appropriate MF(s) for the higher line rate(s) still remains an open problem. In this article, we compare the performance of an On-Off Keying (OOK), Differential Phase Shift Keying (DPSK) and Duo-binary (DB) MF based MLR network in the presence of various physical layer impairment(s) (PLIs) for which, we propose a mathematical model based on various MFs. As a novelty, we validate the proposed theoretical model’s results by comparing them with the results obtained through simulations from OptSim, which has not been conducted in any existing study(s) thus far. Our simulation results show that the DB MF is perfectly suitable for high spectral-efficient MLR systems owing to its high resistance to various PLIs.


Author(s):  
Stanisław Kozdrowski ◽  
Mateusz Zotkiewicz ◽  
Slawomir Sujecki

Ultra-wideband wavelength division multiplexed networks enable operators to use more effectively the bandwidth offered by a single fiber pair and thus make significant savings, both in operational and capital expenditures. The main objective of this study is to minimize optical node resources, such as transponders, multiplexers and wavelength selective switches, needed to provide and maintain high quality of network services, in ultra-wideband wavelength division multiplexed networks, at low cost. A model based on integer programming is proposed, which includes a detailed description of optical network nodal resources. The developed optimization tools are used to study the ultra-wideband wavelength division multiplexed network performance when compared with the traditional C-band wavelength division multiplexed networks. The analysis is carried out for realistic networks of different dimensions and traffic demand sets.


Sign in / Sign up

Export Citation Format

Share Document