Cloud-Based Platforms and Infrastructures

Author(s):  
Marcus Tanque

Cloud computing consists of three fundamental service models: infrastructure-as-a-service, platform-as-a service and software-as-a-service. The technology “cloud computing” comprises four deployment models: public cloud, private cloud, hybrid cloud and community cloud. This chapter describes the six cloud service and deployment models, the association each of these services and models have with physical/virtual networks. Cloud service models are designed to power storage platforms, infrastructure solutions, provisioning and virtualization. Cloud computing services are developed to support shared network resources, provisioned between physical and virtual networks. These solutions are offered to organizations and consumers as utilities, to support dynamic, static, network and database provisioning processes. Vendors offer these resources to support day-to-day resource provisioning amid physical and virtual machines.

2019 ◽  
pp. 84-126
Author(s):  
Marcus Tanque

Cloud computing consists of three fundamental service models: infrastructure-as-a-service, platform-as-a service and software-as-a-service. The technology “cloud computing” comprises four deployment models: public cloud, private cloud, hybrid cloud and community cloud. This chapter describes the six cloud service and deployment models, the association each of these services and models have with physical/virtual networks. Cloud service models are designed to power storage platforms, infrastructure solutions, provisioning and virtualization. Cloud computing services are developed to support shared network resources, provisioned between physical and virtual networks. These solutions are offered to organizations and consumers as utilities, to support dynamic, static, network and database provisioning processes. Vendors offer these resources to support day-to-day resource provisioning amid physical and virtual machines.


This chapter introduces a trustworthy cloud computing architecture that uses the security properties offered by a virtual machine monitor that enforces the principle of least privilege. These security properties are a strong building block to provide trustworthy cloud computing services to cloud consumers. This chapter briefly explained about a proposed system to prevent insider attacks in cloud environment from cloud consumer and cloud service provider perspectives. The proposed framework is initiating how virtual machines are providing the most reliable security materials of the cloud computing architecture. For cloud consumers, the proposed architecture allocates the well-built security materials of the reliable cloud computing services.


2013 ◽  
Vol 660 ◽  
pp. 196-201 ◽  
Author(s):  
Muhammad Irfan ◽  
Zhu Hong ◽  
Nueraimaiti Aimaier ◽  
Zhu Guo Li

Cloud Computing is not a revolution; it’s an evolution of computer science and technology emerging by leaps and bounds, in order to merge all computer science tools and technologies. Cloud Computing technology is hottest to do research and explore new horizons of next generations of Computer Science. There are number of cloud services providers (Amazon EC2), Rackspace Cloud, Terremark and Google Compute Engine) but still enterprises and common users have a number of concerns over cloud service providers. Still there is lot of weakness, challenges and issues are barrier for cloud service providers in order to provide cloud services according to SLA (Service Level agreement). Especially, service provisioning according to SLAs is core objective of each cloud service provider with maximum performance as per SLA. We have identified those challenges issues, as well as proposed new methodology as “SLA (Service Level Agreement) Driven Orchestration Based New Methodology for Cloud Computing Services”. Currently, cloud service providers are using “orchestrations” fully or partially to automate service provisioning but we are trying to integrate and drive orchestration flows from SLAs. It would be new approach to provision cloud service and deliver cloud service as per SLA, satisfying QoS standards.


The proliferation of Cloud Computing has opened new and attractive offerings for consumers. Cloud Service Providers promote and market packages of cloud computing services that cater to diverse opportunities and user applications. While this has obvious advantages, there are certain factors that are a cause for concern. Monitoring the underlying infrastructure that supports the entire fabric of cloud computing is an aspect that requires a great deal of attention. The aspect of monitoring takes on a great deal of significance when performance and robustness of cloud service on offer is taken into consideration. Although research has been conducted into various cloud computing monitoring techniques, there is scope and room yet for an integrated cloud monitoring solution that can fulfill the requirements of cloud administrators to ensure optimal performance of the underlying infrastructure of a cloud computing network. In this paper, we propose a unified monitoring model that is essentially a composite framework involving hardware and network layers. Studies conducted during our experiments suggest that our unified cloud monitoring approach can significantly aid in reducing overall carbon emissions while helping meeting compliance and audit norms by ensuring that the underlying cloud infrastructure is monitored closely


Author(s):  
Nur Widiyasono ◽  
Imam Riadi ◽  
Ahmad Luthfie

<p>Cloud services are offered by many cloud service providers, but in for large companies generally are build  by a private cloud computing. In cloud systems of abuse it can be done by internal users or due to misconfiguration or may also refer to weaknesses in the system. This study evaluated the ADAM method (Advanced Data Acquisition Model) and tested the case schemes which are being carried out in the laboratory simulation of the process in order to obtain forensic evidence of digital data on private cloud computing services. Referring to the results of the investigation process by using ADAM Method, it can be verified that there are several parameters of the success investigation including the structure of files, files, time stamp, mac-address, IP address, username password, and the data from a server both from the desktop PC or smartphone, therefore the investigation by using ADAM can be succesed properly and correctly. Another contribution of this study was to identify the weaknesses of the service system that used owncloud in users list of the the same group can change another’s user’s passwod.</p>


2017 ◽  
Vol 2 (6) ◽  
pp. 1-6
Author(s):  
Arash Mazidi ◽  
Elham Damghanijazi ◽  
Sajad Tofighy

The cloud computing has given services to the users throughout the world during recent years. The cloud computing services have been founded according to ‘As-Pay-You-Go’ model and some leading enterprises give these services. The giving these cloud-computing services has been developed every day and these requirements necessitate for more infrastructures and Internet providers (IPs). The nodes of data centers consume a lot of energy in cloud structure and disseminate noticeable amount of carbon dioxide into the environment. We define a framework and structure for cloud environment of efficient energy in the present paper. We examine the present problems and challenges based on this structure and then present and model management algorithms and source allocation in cloud computing environment in order to manage energy in addition to considering Service Level Agreement. The proposed algorithm has been implemented by cloudsim simulator where the obtained results from simulation of real-time data indicate that the proposed method is superior to previous techniques in terms of energy consumption and observance of Service Level Agreement. Similarly, number of live migration of virtual machines and quantity of transferred data has been improved.


2021 ◽  
Author(s):  
Kevin McGillivray

In Government Cloud Procurement, Kevin McGillivray explores the question of whether governments can adopt cloud computing services and still meet their legal requirements and other obligations to citizens. The book focuses on the interplay between the technical properties of cloud computing services and the complex legal requirements applicable to cloud adoption and use. The legal issues evaluated include data privacy law (GDPR and the US regime), jurisdictional issues, contracts, and transnational private law approaches to addressing legal requirements. McGillivray also addresses the unique position of governments when they outsource core aspects of their information and communications technology to cloud service providers. His analysis is supported by extensive research examining actual cloud contracts obtained through Freedom of Information Act requests. With the demand for cloud computing on the rise, this study fills a gap in legal literature and offers guidance to organizations considering cloud computing.


2014 ◽  
Vol 5 (3) ◽  
pp. 75-88
Author(s):  
Michał Wišniewski

AbstractThis article organizes knowledge on cloud computing presenting the classification of deployment models, characteristics and service models. The author, looking at the problem from the entrepreneur’s perspective, draws attention to the differences in the benefits depending on the cloud computing deployment models and considers an effective way of selection of cloud computing services according to the specificity of organization. Within this work, a thesis statement was considered that in economic terms the cloud computing is not always the best solution for your organization. This raises the question, “What kind of tools should be used to estimate the usefulness of the model cloud computing services in the enterprise?”


2020 ◽  
pp. 1781-1790
Author(s):  
ABDUL RASHID DAR ◽  
D Ravindran ◽  
Shahidul Islam

The cloud-users are getting impatient by experiencing the delays in loading the content of the web applications over the internet, which is usually caused by the complex latency while accessing the cloud datacenters distant from the cloud-users. It is becoming a catastrophic situation in availing the services and applications over the cloud-centric network. In cloud, workload is distributed across the multiple layers which also increases the latency. Time-sensitive Internet of Things (IoT) applications and services, usually in a cloud platform, are running over various virtual machines (VM’s) and possess high complexities while interacting. They face difficulties in the consolidations of the various applications containing heterogenetic workloads. Fog computing takes the cloud computing services to the edge-network, where computation, communication and storage are within the proximity to the end-user’s edge devices. Thus, it utilizes the maximum network bandwidth, enriches the mobility, and lowers the latency. It is a futuristic, convenient and more reliable platform to overcome the cloud computing issues. In this manuscript, we propose a Fog-based Spider Web Algorithm (FSWA), a heuristic approach which reduces the delays time (DT) and enhances the response time (RT) during the workflow among the various edge nodes across the fog network. The main purpose is to trace and locate the nearest f-node for computation and to reduce the latency across the various nodes in a network. Reduction of latency will enhance the quality of service (QoS) parameters, smooth resource distribution, and services availability. Latency can be an important factor for resource optimization issues in distributed computing environments. In comparison to the cloud computing, the latency in fog computing is much improved.


Sign in / Sign up

Export Citation Format

Share Document