A Multiobjective Genetic-Algorithm-Based Optimization of Micro-Electrical Discharge Drilling

Author(s):  
Deepak Rajendra Unune ◽  
Amit Aherwar

Inconel 718 superalloy finds wide range of applications in various industries due to its superior mechanical properties including high strength, high hardness, resistance to corrosion, etc. Though poor machinability especially in micro-domain by conventional machining processes makes it one of the “difficult-to-cut” material. The micro-electrical discharge machining (µ-EDM) is appropriate process for machining any conductive material, although selection of machining parameters for higher machining rate and accuracy is difficult task. The present study attempts to optimize parameters in micro-electrical discharge drilling (µ-EDD) of Inconel 718. The material removal rate, electrode wear ratio, overcut, and taper angle have been selected as performance measures while gap voltage, capacitance, electrode rotational speed, and feed rate have been selected as process parameters. The optimum setting of process parameters has been obtained using Genetic Algorithm based multi-objective optimization and verified experimentally.

Author(s):  
Deepak Rajendra Unune ◽  
Amit Aherwar

Inconel 718 superalloy finds wide range of applications in various industries due to its superior mechanical properties including high strength, high hardness, resistance to corrosion, etc. Though poor machinability especially in micro-domain by conventional machining processes makes it one of the “difficult-to-cut” material. The micro-electrical discharge machining (µ-EDM) is appropriate process for machining any conductive material, although selection of machining parameters for higher machining rate and accuracy is difficult task. The present study attempts to optimize parameters in micro-electrical discharge drilling (µ-EDD) of Inconel 718. The material removal rate, electrode wear ratio, overcut, and taper angle have been selected as performance measures while gap voltage, capacitance, electrode rotational speed, and feed rate have been selected as process parameters. The optimum setting of process parameters has been obtained using Genetic Algorithm based multi-objective optimization and verified experimentally.


Author(s):  
Sagil James ◽  
Sharadkumar Kakadiya

Shape Memory Alloys are smart materials that tend to remember and return to its original shape when subjected to deformation. These materials find numerous applications in robotics, automotive and biomedical industries. Micromachining of SMAs is often a considerable challenge using conventional machining processes. Micro-Electrical Discharge Machining is a combination of thermal and electrical processes, which can machine any electrically conductive material at micron scale independent of its hardness. It employs dielectric medium such as hydrocarbon oils, deionized water, and kerosene. Using liquid dielectrics has adverse effects on the machined surface causing cracking, white layer deposition, and irregular surface finish. These limitations can be minimized by using a dry dielectric medium such as air or nitrogen gas. This research involves the experimental study of micromachining of Shape Memory Alloys using dry Micro-Electrical Discharge Machining process. The study considers the effect of critical process parameters including discharge voltage and discharge current on the material removal rate and the tool wear rate. A comparison study is performed between the Micro-Electrical Discharge Machining process with using the liquid as well as air as the dielectric medium. In this study, microcavities are successfully machined on shape memory alloys using dry Micro-Electrical Discharge Machining process. The study found that the dry Micro-Electrical Discharge Machining produces a comparatively better surface finish, has lower tool wear and lesser material removal rate compared to the process using the liquid as the dielectric medium. The results of this research could extend the industrial applications of Micro Electrical Discharge Machining processes.


Author(s):  
Gianluca D’Urso ◽  
Michela Longo ◽  
Giancarlo Maccarini ◽  
Chiara Ravasio

Micro-Electrical Discharge Machining (μEDM) has become a widely accepted non-traditional material removal process for micro-manufacture of conductive materials considered difficult to be cut using traditional machining technologies. Moreover, EDM is an ideal process for obtaining burr-free micron-size apertures with high aspect ratios. Aim of this work was to investigate the feasibility of drilling micro holes on titanium using μ-EDM technology. Titanium plates having a thickness equal to 0.5 mm were taken into account and the holes were performed using a carbide electrode having a diameter equal to 0.3 mm. The Design Of Experiment (DOE) method was used for planning the experimental campaign and ANOVA techniques were applied to study the relationship between process parameters and final output. In particular, the most important process parameters such as peak current, pulse duration, frequency and electrode rotation speed were investigated as a function of material removal rate, wear rate and machining accuracy. Geometrical and dimensional analyses were carried out on micro-holes using both optical and scanning electron microscopes to evaluate both the over cut and the rate of taper.


Author(s):  
Goutam Kumar Bose ◽  
Pritam Pain ◽  
Sayak Mukhopadhyay

Electrical Discharge Machining (EDM) is nontraditional machining processes applied for precise machining and developing intricate geometries on work materials which are difficult to machine by conventional process. The present research work emphases on the die sinking EDM of AISI P20 tool steel, to study the effect of machining parameters such as pulse on time (POT), pulse off time (POF), discharge current (GI) and spark gap (SG) on performance response like Material removal rate (MRR), Surface Roughness (Ra) and Overcut (OC) using square-shaped Cu tool with Lateral flushing. The experimentation is performed using L27 orthogonal array and significant process parameters are ascertained using Regression analysis. The influence of the important process parameters on individual responses are detected using Cuckoo search algorithm. The present chapter is aimed at multi-response optimization i.e. higher MRR, lower Ra and minimum OC, which is conceded out using Genetic Algorithm.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


Manufacturing ◽  
2003 ◽  
Author(s):  
Scott F. Miller ◽  
Albert J. Shih

The development of new, advanced engineering materials and the needs for precise and flexible prototype and low-volume production have made wire electrical discharge machining (EDM) an important manufacturing process to meet such demand. This research investigates the effect of spark on-time duration and spark on-time ratio, two important EDM process parameters, on the material removal rate (MRR) and surface integrity of four types of advanced material: porous metal foams, metal bond diamond grinding wheels, sintered Nd-Fe-B magnets, and carbon-carbon bipolar plates. An experimental procedure was developed. During the wire EDM, five types of constraints on the MRR due to short circuit, wire breakage, machine slide speed limit, and spark on-time upper and lower limits have been identified. An envelope of feasible EDM process parameters is created and compared across different work-materials. Applications of such process envelope to select process parameters for maximum MRR and for machining of micro features are presented.


2021 ◽  
pp. 2150102
Author(s):  
MAYANK CHOUBEY ◽  
K. P. MAITY

The increasing trends towards miniaturized and lightweight components for various engineering and aerospace applications by unconventional machining the demand for micro-electrical discharge machining (EDM) have become increasingly wide. Micro-EDM is one of the most promising unconventional machining processes as compared to other unconventional machining due to its lower cost, ease of operation, and accuracy. This research explores the experimental investigation of micro-EDM operation on hard and difficult to machine material Inconel 718. The micro-holes were fabricated on an Inconel 718 workpiece with a copper electrode. The influence of input process parameters on material removal rate (MRR), machining time, and quality of the fabricated micro-holes were studied. Overcut and taperness of the fabricated micro-sized through holes were measured to address the accuracy of the fabricated micro-holes in micro-EDM operation. Experimental results reveal that the increase in current and voltage increases the MRR, and reduced machining time but at the cost of dimensional accuracy of the fabricated holes. The high value of current and voltage resulted in poor surface quality. The optimum machining condition that gives higher MRR with higher machining precision was obtained by experimenting while machining Inconel 718.


Sign in / Sign up

Export Citation Format

Share Document