Using Global Appearance Descriptors to Solve Topological Visual SLAM

Author(s):  
Lorenzo Fernández Rojo ◽  
Luis Paya ◽  
Francisco Amoros ◽  
Oscar Reinoso

Mobile robots have extended to many different environments, where they have to move autonomously to fulfill an assigned task. With this aim, it is necessary that the robot builds a model of the environment and estimates its position using this model. These two problems are often faced simultaneously. This process is known as SLAM (simultaneous localization and mapping) and is very common since when a robot begins moving in a previously unknown environment it must start generating a model from the scratch while it estimates its position simultaneously. This chapter is focused on the use of computer vision to solve this problem. The main objective is to develop and test an algorithm to solve the SLAM problem using two sources of information: (1) the global appearance of omnidirectional images captured by a camera mounted on the mobile robot and (2) the robot internal odometry. A hybrid metric-topological approach is proposed to solve the SLAM problem.

Author(s):  
Lorenzo Fernández Rojo ◽  
Luis Paya ◽  
Francisco Amoros ◽  
Oscar Reinoso

Nowadays, mobile robots have extended to many different environments, where they have to move autonomously to fulfill an assigned task. With this aim, it is necessary that the robot builds a model of the environment and estimates its position using this model. These two problems are often faced simultaneously. This process is known as SLAM (Simultaneous Localization and Mapping) and is very common since when a robot begins moving in a previously unknown environment it must start generating a model from the scratch while it estimates its position simultaneously. This work is focused on the use of computer vision to solve this problem. The main objective is to develop and test an algorithm to solve the SLAM problem using two sources of information: (a) the global appearance of omnidirectional images captured by a camera mounted on the mobile robot and (b) the robot internal odometry. A hybrid metric-topological approach is proposed to solve the SLAM problem.


Author(s):  
Olusanya Agunbiade ◽  
Tranos Zuva

The important characteristic that could assist in autonomous navigation is the ability of a mobile robot to concurrently construct a map for an unknown environment and localize itself within the same environment. This computational problem is known as Simultaneous Localization and Mapping (SLAM). In literature, researchers have studied this approach extensively and have proposed a lot of improvement towards it. More so, we are experiencing a steady transition of this technology to industries. However, there are still setbacks limiting the full acceptance of this technology even though the research had been conducted over the last 30 years. Thus, to determine the problems facing SLAM, this paper conducted a review on various foundation and recent SLAM algorithms. Challenges and open issues alongside the research direction for this area were discussed. However, towards addressing the problem discussed, a novel SLAM technique will be proposed.


2018 ◽  
Vol 7 (3.33) ◽  
pp. 28
Author(s):  
Asilbek Ganiev ◽  
Kang Hee Lee

In this paper, we used a robot operating system (ROS) that is designed to work with mobile robots. ROS provides us with simultaneous localization and mapping of the environment, and here it is used to autonomously navigate a mobile robot simulator between specified points. Also, when the mobile robot automatically navigates between the starting point and the target point, it bypasses obstacles; and if necessary, sets a new path of the route to reach the goal point.  


2017 ◽  
Vol 36 (12) ◽  
pp. 1363-1386 ◽  
Author(s):  
Patrick McGarey ◽  
Kirk MacTavish ◽  
François Pomerleau ◽  
Timothy D Barfoot

Tethered mobile robots are useful for exploration in steep, rugged, and dangerous terrain. A tether can provide a robot with robust communications, power, and mechanical support, but also constrains motion. In cluttered environments, the tether will wrap around a number of intermediate ‘anchor points’, complicating navigation. We show that by measuring the length of tether deployed and the bearing to the most recent anchor point, we can formulate a tethered simultaneous localization and mapping (TSLAM) problem that allows us to estimate the pose of the robot and the positions of the anchor points, using only low-cost, nonvisual sensors. This information is used by the robot to safely return along an outgoing trajectory while avoiding tether entanglement. We are motivated by TSLAM as a building block to aid conventional, camera, and laser-based approaches to simultaneous localization and mapping (SLAM), which tend to fail in dark and or dusty environments. Unlike conventional range-bearing SLAM, the TSLAM problem must account for the fact that the tether-length measurements are a function of the robot’s pose and all the intermediate anchor-point positions. While this fact has implications on the sparsity that can be exploited in our method, we show that a solution to the TSLAM problem can still be found and formulate two approaches: (i) an online particle filter based on FastSLAM and (ii) an efficient, offline batch solution. We demonstrate that either method outperforms odometry alone, both in simulation and in experiments using our TReX (Tethered Robotic eXplorer) mobile robot operating in flat-indoor and steep-outdoor environments. For the indoor experiment, we compare each method using the same dataset with ground truth, showing that batch TSLAM outperforms particle-filter TSLAM in localization and mapping accuracy, owing to superior anchor-point detection, data association, and outlier rejection.


2017 ◽  
Vol 13 (8) ◽  
pp. 155014771772671
Author(s):  
Jiuqing Wan ◽  
Shaocong Bu ◽  
Jinsong Yu ◽  
Liping Zhong

This article proposes a hybrid dynamic belief propagation for simultaneous localization and mapping in the mobile robot network. The positions of landmarks and the poses of moving robots at each time slot are estimated simultaneously in an online and distributed manner, by fusing the odometry data of each robot and the measurements of robot–robot or robot–landmark relative distance and angle. The joint belief state of all robots and landmarks is encoded by a factor graph and the marginal posterior probability distribution of each variable is inferred by belief propagation. We show how to calculate, broadcast, and update messages between neighboring nodes in the factor graph. Specifically, we combine parametric and nonparametric techniques to tackle the problem arisen from non-Gaussian distributions and nonlinear models. Simulation and experimental results on publicly available dataset show the validity of our algorithm.


Sign in / Sign up

Export Citation Format

Share Document