ZAMREN Big Data Management (ZAMBiDM) Envisaging Efficiency and Analytically Manage IT Resources

Web Services ◽  
2019 ◽  
pp. 1802-1811
Author(s):  
Jameson Mbale

The ZAMREN member institutions deal with heterogeneous teaching and research materials drawn from all walks-of-life such as industry, and NRENs world over. To deal with such huge data that is in terabits for academic and economic gain becomes a mammoth task to manipulate, process, store and analyse. It is in view of that the ZAMREN Big Data and Data Management, in this work abbreviated as ZAMBiDM, is envisaged to collectively gather relevant heterogeneous large volumes of a wide variety of data from all sectors of economy. The data would be analytically managed in storage, processing and obtaining actionable insight real-time as a way to solve high-value skilled academic and industrial business problems, in order to prepare graduates for competitive future workforce. The data would be collected from all line-ministries of Zambia such as education, agriculture, health, mining, lands, communications, commerce, including industries and NRENs worldwide and be analytically analysed to exploit strategic actions that would enhance decision making in executing relevant tasks.

Author(s):  
Jameson Mbale

The ZAMREN member institutions deal with heterogeneous teaching and research materials drawn from all walks-of-life such as industry, and NRENs world over. To deal with such huge data that is in terabits for academic and economic gain becomes a mammoth task to manipulate, process, store and analyse. It is in view of that the ZAMREN Big Data and Data Management, in this work abbreviated as ZAMBiDM, is envisaged to collectively gather relevant heterogeneous large volumes of a wide variety of data from all sectors of economy. The data would be analytically managed in storage, processing and obtaining actionable insight real-time as a way to solve high-value skilled academic and industrial business problems, in order to prepare graduates for competitive future workforce. The data would be collected from all line-ministries of Zambia such as education, agriculture, health, mining, lands, communications, commerce, including industries and NRENs worldwide and be analytically analysed to exploit strategic actions that would enhance decision making in executing relevant tasks.


10.28945/2192 ◽  
2015 ◽  
Author(s):  
Rogério Rossi ◽  
Kechi Hirama

[The final form of this paper was published in the journal Issues in Informing Science and Information Technology.] Considering that big data is a reality for an increasing number of organizations in many areas, its management represents a set of challenges involving big data modeling, storage and retrieval, analysis and visualization. However, technological resources, people and processes are crucial dimensions to facilitate the management of big data in any organization, allowing information and knowledge from a large volume of data to support decision-making. Big data management must be supported by technology, people and processes; hence, this article discusses these three dimensions: the technologies for storage, analysis and visualization of big data; the human aspects of big data; and, in addition, the process management involved in a technological and business approach for big data management.


2019 ◽  
Vol 6 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Jie Lu ◽  
Anjin Liu ◽  
Yiliao Song ◽  
Guangquan Zhang

Abstract Data-driven decision-making ($$\mathrm {D^3}$$D3M) is often confronted by the problem of uncertainty or unknown dynamics in streaming data. To provide real-time accurate decision solutions, the systems have to promptly address changes in data distribution in streaming data—a phenomenon known as concept drift. Past data patterns may not be relevant to new data when a data stream experiences significant drift, thus to continue using models based on past data will lead to poor prediction and poor decision outcomes. This position paper discusses the basic framework and prevailing techniques in streaming type big data and concept drift for $$\mathrm {D^3}$$D3M. The study first establishes a technical framework for real-time $$\mathrm {D^3}$$D3M under concept drift and details the characteristics of high-volume streaming data. The main methodologies and approaches for detecting concept drift and supporting $$\mathrm {D^3}$$D3M are highlighted and presented. Lastly, further research directions, related methods and procedures for using streaming data to support decision-making in concept drift environments are identified. We hope the observations in this paper could support researchers and professionals to better understand the fundamentals and research directions of $$\mathrm {D^3}$$D3M in streamed big data environments.


Sign in / Sign up

Export Citation Format

Share Document