scholarly journals Data-driven decision support under concept drift in streamed big data

2019 ◽  
Vol 6 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Jie Lu ◽  
Anjin Liu ◽  
Yiliao Song ◽  
Guangquan Zhang

Abstract Data-driven decision-making ($$\mathrm {D^3}$$D3M) is often confronted by the problem of uncertainty or unknown dynamics in streaming data. To provide real-time accurate decision solutions, the systems have to promptly address changes in data distribution in streaming data—a phenomenon known as concept drift. Past data patterns may not be relevant to new data when a data stream experiences significant drift, thus to continue using models based on past data will lead to poor prediction and poor decision outcomes. This position paper discusses the basic framework and prevailing techniques in streaming type big data and concept drift for $$\mathrm {D^3}$$D3M. The study first establishes a technical framework for real-time $$\mathrm {D^3}$$D3M under concept drift and details the characteristics of high-volume streaming data. The main methodologies and approaches for detecting concept drift and supporting $$\mathrm {D^3}$$D3M are highlighted and presented. Lastly, further research directions, related methods and procedures for using streaming data to support decision-making in concept drift environments are identified. We hope the observations in this paper could support researchers and professionals to better understand the fundamentals and research directions of $$\mathrm {D^3}$$D3M in streamed big data environments.

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4836
Author(s):  
Liping Zhang ◽  
Yifan Hu ◽  
Qiuhua Tang ◽  
Jie Li ◽  
Zhixiong Li

In modern manufacturing industry, the methods supporting real-time decision-making are the urgent requirement to response the uncertainty and complexity in intelligent production process. In this paper, a novel closed-loop scheduling framework is proposed to achieve real-time decision making by calling the appropriate data-driven dispatching rules at each rescheduling point. This framework contains four parts: offline training, online decision-making, data base and rules base. In the offline training part, the potential and appropriate dispatching rules with managers’ expectations are explored successfully by an improved gene expression program (IGEP) from the historical production data, not just the available or predictable information of the shop floor. In the online decision-making part, the intelligent shop floor will implement the scheduling scheme which is scheduled by the appropriate dispatching rules from rules base and store the production data into the data base. This approach is evaluated in a scenario of the intelligent job shop with random jobs arrival. Numerical experiments demonstrate that the proposed method outperformed the existing well-known single and combination dispatching rules or the discovered dispatching rules via metaheuristic algorithm in term of makespan, total flow time and tardiness.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 859
Author(s):  
Abdulaziz O. AlQabbany ◽  
Aqil M. Azmi

We are living in the age of big data, a majority of which is stream data. The real-time processing of this data requires careful consideration from different perspectives. Concept drift is a change in the data’s underlying distribution, a significant issue, especially when learning from data streams. It requires learners to be adaptive to dynamic changes. Random forest is an ensemble approach that is widely used in classical non-streaming settings of machine learning applications. At the same time, the Adaptive Random Forest (ARF) is a stream learning algorithm that showed promising results in terms of its accuracy and ability to deal with various types of drift. The incoming instances’ continuity allows for their binomial distribution to be approximated to a Poisson(1) distribution. In this study, we propose a mechanism to increase such streaming algorithms’ efficiency by focusing on resampling. Our measure, resampling effectiveness (ρ), fuses the two most essential aspects in online learning; accuracy and execution time. We use six different synthetic data sets, each having a different type of drift, to empirically select the parameter λ of the Poisson distribution that yields the best value for ρ. By comparing the standard ARF with its tuned variations, we show that ARF performance can be enhanced by tackling this important aspect. Finally, we present three case studies from different contexts to test our proposed enhancement method and demonstrate its effectiveness in processing large data sets: (a) Amazon customer reviews (written in English), (b) hotel reviews (in Arabic), and (c) real-time aspect-based sentiment analysis of COVID-19-related tweets in the United States during April 2020. Results indicate that our proposed method of enhancement exhibited considerable improvement in most of the situations.


Sign in / Sign up

Export Citation Format

Share Document