Evolution of the Smart Spaces Paradigm Toward the Semantic Web of Things

This chapter describes how the Smart-M3 platform evolved in the direction of supporting web standards (e.g., HTTP and Websockets) to be ready for the (Semantic) Web of Things. The latest step in the Smart-M3 progress is named SEPA (SPARQL Event Processing Architecture). Employing SEPA as a mean for semantic interoperability in the Web of Things means allowing heterogeneous devices to be discovered, accessed, and controlled through a set of SPARQL queries, subscriptions, and updates according to a given ontology. In this chapter, an ontology for the (Semantic) Web of Things is presented. Using web standards solves the issues of interoperability but poses new challenges with respect to the typical constraints of IoT applications.

2020 ◽  
Vol 7 (4) ◽  
pp. 1-13
Author(s):  
Ismail Nadim ◽  
Yassine El Ghayam ◽  
Abdelalim Sadiq

The web of things (WoT) improves syntactic interoperability between internet of things (IoT) devices by leveraging web standards. However, the lack of a unified WoT data model remains a challenge for the semantic interoperability. Fortunately, semantic web technologies are taking this challenge over by offering numerous semantic vocabularies like the semantic sensor networks (SSN) ontology. Although it enables the semantic interoperability between heterogeneous devices, the manual annotation hinders the scalability of the WoT. As a result, the automation of the semantic annotation of WoT devices becomes a prior issue for researchers. This paper proposes a method to improve the semi-automatic semantic annotation of web of things (WoT) using the entity linking task and the well-known ontologies, mainly the SSN.


Author(s):  
Axel Polleres ◽  
Simon Steyskal

The World Wide Web Consortium (W3C) as the main standardization body for Web standards has set a particular focus on publishing and integrating Open Data. In this chapter, the authors explain various standards from the W3C's Semantic Web activity and the—potential—role they play in the context of Open Data: RDF, as a standard data format for publishing and consuming structured information on the Web; the Linked Data principles for interlinking RDF data published across the Web and leveraging a Web of Data; RDFS and OWL to describe vocabularies used in RDF and for describing mappings between such vocabularies. The authors conclude with a review of current deployments of these standards on the Web, particularly within public Open Data initiatives, and discuss potential risks and challenges.


Author(s):  
Christopher Walton

In the introductory chapter of this book, we discussed the means by which knowledge can be made available on the Web. That is, the representation of the knowledge in a form by which it can be automatically processed by a computer. To recap, we identified two essential steps that were deemed necessary to achieve this task: 1. We discussed the need to agree on a suitable structure for the knowledge that we wish to represent. This is achieved through the construction of a semantic network, which defines the main concepts of the knowledge, and the relationships between these concepts. We presented an example network that contained the main concepts to differentiate between kinds of cameras. Our network is a conceptualization, or an abstract view of a small part of the world. A conceptualization is defined formally in an ontology, which is in essence a vocabulary for knowledge representation. 2. We discussed the construction of a knowledge base, which is a store of knowledge about a domain in machine-processable form; essentially a database of knowledge. A knowledge base is constructed through the classification of a body of information according to an ontology. The result will be a store of facts and rules that describe the domain. Our example described the classification of different camera features to form a knowledge base. The knowledge base is expressed formally in the language of the ontology over which it is defined. In this chapter we elaborate on these two steps to show how we can define ontologies and knowledge bases specifically for the Web. This will enable us to construct Semantic Web applications that make use of this knowledge. The chapter is devoted to a detailed explanation of the syntax and pragmatics of the RDF, RDFS, and OWL Semantic Web standards. The resource description framework (RDF) is an established standard for knowledge representation on the Web. Taken together with the associated RDF Schema (RDFS) standard, we have a language for representing simple ontologies and knowledge bases on the Web.


2013 ◽  
Vol 756-759 ◽  
pp. 2157-2162
Author(s):  
Xu Chao Chang ◽  
Chun Hong Zhang ◽  
Li Sun

The Web of Things (WoT) is a refinement of the Internet of Things by integrating heterogeneous devices not only into the Internet (the network), but into the Web (the application layer). With the expansion of applications and devices, WoT Gateway Middleware is bearing more and more pressure from data processing, and therefore the WoT gateway middleware takes more time to respond to the requests of applications. A data collecting and caching mechanism is an effective solution to this problem. In this paper, we begin by describing the gateway middleware architecture with the focus on data collecting and caching functionality. Then the data collecting and caching (DCC) functionality module is discussed in detail. The DCC module supports three kinds of data collecting and caching modes: fundamental mode, configurable mode and adaptive mode. We finally demonstrate how these three modes work. A SMART HOME system is developed as the implementation to verify and discuss the proposed mechanism.


Author(s):  
Khalid Saleh Aloufi

<span>Open data are available from various private and public institutions in different resource formats. There are already great number of open data that are published using open data portals, where datasets and resources are mainly presented in tabular or sheet formats. However, such formats have some barriers with application developments and web standards. One of the web recommenced standards for semantic web application is RDF. There are various research efforts have been focused on presenting open data in RDF formats. However, no framework has transformed tabular open data into RDFs considering the HTML tags and properties of the resources and datasets. Therefore, a methodology is required to generate RDF resources from this type of open data resources. This methodology applies data transformations of open data from a tabular format to RDF files for the Saudi Open Data Portal. The methodology successfully transforms open data resources in sheet format into RDF resources. Recommendations and future work are given to enhance the development of building open data.</span>


Author(s):  
Axel Polleres ◽  
Simon Steyskal

The World Wide Web Consortium (W3C) as the main standardization body for Web standards has set a particular focus on publishing and integrating Open Data. In this chapter, the authors explain various standards from the W3C's Semantic Web activity and the—potential—role they play in the context of Open Data: RDF, as a standard data format for publishing and consuming structured information on the Web; the Linked Data principles for interlinking RDF data published across the Web and leveraging a Web of Data; RDFS and OWL to describe vocabularies used in RDF and for describing mappings between such vocabularies. The authors conclude with a review of current deployments of these standards on the Web, particularly within public Open Data initiatives, and discuss potential risks and challenges.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1466 ◽  
Author(s):  
Daniel Ibaseta ◽  
Julio Molleda ◽  
Fidel Díez ◽  
Juan C. Granda

Many Internet of Things platforms use dedicated software coupled with proprietary devices and interfaces, creating silo solutions with no interoperability. The Web of Things paradigm promotes using open Web standards to connect physical objects to the Internet through an application layer. In this paper, we propose a low-cost, indoor air quality monitoring sensor implementing a minimal servient building block recommended by the Web of Things Working Group of the World Wide Web Consortium. The proposed sensor runs a Web server on a low-power system-on-chip microcontroller, which provides temperature, relative humidity and carbon dioxide measurements to the Internet through a REST API. Any client on the Internet able to manage the HTTP protocol may access this sensor, making it compatible with any air quality monitoring platform that uses HTTP.


2011 ◽  
Vol 26 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Yolanda Gil

AbstractThe Semantic Web has radically changed the landscape of knowledge acquisition research. It used to be the case that a single user would edit a local knowledge base, that the user would have domain expertise to add to the system, and that the system would have a centralized knowledge base and reasoner. The world surrounding knowledge-rich systems changed drastically with the advent of the Web, and many of the original assumptions were no longer a given. Those assumptions had to be revisited and addressed in combination with new challenges that were put forward. Knowledge-rich systems today are distributed, have many users with different degrees of expertise, and integrate many shared knowledge sources of varying quality. Recent work in interactive knowledge capture includes new and exciting research on collaborative knowledge sharing, collecting knowledge from Web volunteers, and capturing knowledge provenance.


Sign in / Sign up

Export Citation Format

Share Document