Genetic Algorithm and Other Meta-Heuristics

Author(s):  
Bernard K.S. Cheung

Genetic algorithms have been applied in solving various types of large-scale, NP-hard optimization problems. Many researchers have been investigating its global convergence properties using Schema Theory, Markov Chain, etc. A more realistic approach, however, is to estimate the probability of success in finding the global optimal solution within a prescribed number of generations under some function landscapes. Further investigation reveals that its inherent weaknesses that affect its performance can be remedied, while its efficiency can be significantly enhanced through the design of an adaptive scheme that integrates the crossover, mutation and selection operations. The advance of Information Technology and the extensive corporate globalization create great challenges for the solution of modern supply chain models that become more and more complex and size formidable. Meta-heuristic methods have to be employed to obtain near optimal solutions. Recently, a genetic algorithm has been reported to solve these problems satisfactorily and there are reasons for this.

2011 ◽  
Vol 48-49 ◽  
pp. 25-28
Author(s):  
Wei Jian Ren ◽  
Yuan Jun Qi ◽  
Wei Lv ◽  
Cheng Da Li

According to the phenomenon of falling into local optimum during solving large-scale optimization problems and the shortcomings of poor convergence of Immune Genetic Algorithm, a new kind of probability selection method based on the concentration for the genetic operation is presented. Considering the features of chaos optimization method, such like not requiring the solved problems with continuity or differentiability, which is unlike the conventional method, and also with a solving process within a certain range traverse in order to find the global optimal solution, a kind of Chaos Immune Genetic Algorithm based on Logistic map and Hénon map is proposed. Through the application to TSP problem, the results have showed the superior to other algorithms.


2010 ◽  
Vol 37-38 ◽  
pp. 203-206
Author(s):  
Rong Jiang

Modern management is a science of technology that adopts analysis, test and quantification methods to make a comprehensive arrangement of the limited resources to realize an efficient operation of a practical system. Simulated annealing algorithm has become one of the important tools for solving complex optimization problems, because of its intelligence, widely used and global search ability. Genetic algorithm may prevent effectively searching process from restraining in local optimum, thus it is more possible to obtains the global optimal solution.This paper solves unconstrained programming by simulated annealing algorithm and calculates constrained nonlinear programming by genetic algorithm in modern management. So that optimization process was simplified and the global optimal solution is ensured reliably.


Author(s):  
Ruiyang Song ◽  
Kuang Xu

We propose and analyze a temporal concatenation heuristic for solving large-scale finite-horizon Markov decision processes (MDP), which divides the MDP into smaller sub-problems along the time horizon and generates an overall solution by simply concatenating the optimal solutions from these sub-problems. As a “black box” architecture, temporal concatenation works with a wide range of existing MDP algorithms. Our main results characterize the regret of temporal concatenation compared to the optimal solution. We provide upper bounds for general MDP instances, as well as a family of MDP instances in which the upper bounds are shown to be tight. Together, our results demonstrate temporal concatenation's potential of substantial speed-up at the expense of some performance degradation.


1995 ◽  
Vol 117 (1) ◽  
pp. 155-157 ◽  
Author(s):  
F. C. Anderson ◽  
J. M. Ziegler ◽  
M. G. Pandy ◽  
R. T. Whalen

We have examined the feasibility of using massively-parallel and vector-processing supercomputers to solve large-scale optimization problems for human movement. Specifically, we compared the computational expense of determining the optimal controls for the single support phase of gait using a conventional serial machine (SGI Iris 4D25), a MIMD parallel machine (Intel iPSC/860), and a parallel-vector-processing machine (Cray Y-MP 8/864). With the human body modeled as a 14 degree-of-freedom linkage actuated by 46 musculotendinous units, computation of the optimal controls for gait could take up to 3 months of CPU time on the Iris. Both the Cray and the Intel are able to reduce this time to practical levels. The optimal solution for gait can be found with about 77 hours of CPU on the Cray and with about 88 hours of CPU on the Intel. Although the overall speeds of the Cray and the Intel were found to be similar, the unique capabilities of each machine are better suited to different portions of the computational algorithm used. The Intel was best suited to computing the derivatives of the performance criterion and the constraints whereas the Cray was best suited to parameter optimization of the controls. These results suggest that the ideal computer architecture for solving very large-scale optimal control problems is a hybrid system in which a vector-processing machine is integrated into the communication network of a MIMD parallel machine.


2021 ◽  
Vol 12 (4) ◽  
pp. 81-100
Author(s):  
Yao Peng ◽  
Zepeng Shen ◽  
Shiqi Wang

Multimodal optimization problem exists in multiple global and many local optimal solutions. The difficulty of solving these problems is finding as many local optimal peaks as possible on the premise of ensuring global optimal precision. This article presents adaptive grouping brainstorm optimization (AGBSO) for solving these problems. In this article, adaptive grouping strategy is proposed for achieving adaptive grouping without providing any prior knowledge by users. For enhancing the diversity and accuracy of the optimal algorithm, elite reservation strategy is proposed to put central particles into an elite pool, and peak detection strategy is proposed to delete particles far from optimal peaks in the elite pool. Finally, this article uses testing functions with different dimensions to compare the convergence, accuracy, and diversity of AGBSO with BSO. Experiments verify that AGBSO has great localization ability for local optimal solutions while ensuring the accuracy of the global optimal solutions.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 502
Author(s):  
Tianyang Liu ◽  
Qiang Sun ◽  
Huachun Zhou ◽  
Qi Wei

The problem of network coding resource optimization with a known topological structure is NP-hard. Traditional quantum genetic algorithms have the disadvantages of slow convergence and difficulty in finding the optimal solution when dealing with this problem. To overcome these disadvantages, this paper proposes an adaptive quantum genetic algorithm based on the cooperative mutation of gene number and fitness (GNF-QGA). This GNF-QGA adopts the rotation angle adaptive adjustment mechanism. To avoid excessive illegal individuals, an illegal solution adjustment mechanism is added to the GNF-QGA. A solid demonstration was provided that the proposed algorithm has a fast convergence speed and good optimization capability when solving network coding resource optimization problems.


2017 ◽  
Vol 1 (2) ◽  
pp. 82 ◽  
Author(s):  
Tirana Noor Fatyanosa ◽  
Andreas Nugroho Sihananto ◽  
Gusti Ahmad Fanshuri Alfarisy ◽  
M Shochibul Burhan ◽  
Wayan Firdaus Mahmudy

The optimization problems on real-world usually have non-linear characteristics. Solving non-linear problems is time-consuming, thus heuristic approaches usually are being used to speed up the solution’s searching. Among of the heuristic-based algorithms, Genetic Algorithm (GA) and Simulated Annealing (SA) are two among most popular. The GA is powerful to get a nearly optimal solution on the broad searching area while SA is useful to looking for a solution in the narrow searching area. This study is comparing performance between GA, SA, and three types of Hybrid GA-SA to solve some non-linear optimization cases. The study shows that Hybrid GA-SA can enhance GA and SA to provide a better result


Author(s):  
Jungho Park ◽  
Hadi El-Amine ◽  
Nevin Mutlu

We study a large-scale resource allocation problem with a convex, separable, not necessarily differentiable objective function that includes uncertain parameters falling under an interval uncertainty set, considering a set of deterministic constraints. We devise an exact algorithm to solve the minimax regret formulation of this problem, which is NP-hard, and we show that the proposed Benders-type decomposition algorithm converges to an [Formula: see text]-optimal solution in finite time. We evaluate the performance of the proposed algorithm via an extensive computational study, and our results show that the proposed algorithm provides efficient solutions to large-scale problems, especially when the objective function is differentiable. Although the computation time takes longer for problems with nondifferentiable objective functions as expected, we show that good quality, near-optimal solutions can be achieved in shorter runtimes by using our exact approach. We also develop two heuristic approaches, which are partially based on our exact algorithm, and show that the merit of the proposed exact approach lies in both providing an [Formula: see text]-optimal solution and providing good quality near-optimal solutions by laying the foundation for efficient heuristic approaches.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjin Liu ◽  
Xihong Chen ◽  
Yu Zhao

A prototype filter design for FBMC/OQAM systems is proposed in this study. The influence of both the channel estimation and the stop-band energy is taken into account in this method. An efficient preamble structure is proposed to improve the performance of channel estimation and save the frequency spectral efficiency. The reciprocal of the signal-to-interference plus noise ratio (RSINR) is derived to measure the influence of the prototype filter on channel estimation. After that, the process of prototype filter design is formulated as an optimization problem with constraint on the RSINR. To accelerate the convergence and obtain global optimal solution, an improved genetic algorithm is proposed. Especially, the History Network and pruning operator are adopted in this improved genetic algorithm. Simulation results demonstrate the validity and efficiency of the prototype filter designed in this study.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 758
Author(s):  
Andrea Ferigo ◽  
Giovanni Iacca

The ever-increasing complexity of industrial and engineering problems poses nowadays a number of optimization problems characterized by thousands, if not millions, of variables. For instance, very large-scale problems can be found in chemical and material engineering, networked systems, logistics and scheduling. Recently, Deb and Myburgh proposed an evolutionary algorithm capable of handling a scheduling optimization problem with a staggering number of variables: one billion. However, one important limitation of this algorithm is its memory consumption, which is in the order of 120 GB. Here, we follow up on this research by applying to the same problem a GPU-enabled “compact” Genetic Algorithm, i.e., an Estimation of Distribution Algorithm that instead of using an actual population of candidate solutions only requires and adapts a probabilistic model of their distribution in the search space. We also introduce a smart initialization technique and custom operators to guide the search towards feasible solutions. Leveraging the compact optimization concept, we show how such an algorithm can optimize efficiently very large-scale problems with millions of variables, with limited memory and processing power. To complete our analysis, we report the results of the algorithm on very large-scale instances of the OneMax problem.


Sign in / Sign up

Export Citation Format

Share Document