WLAN Security Management

Author(s):  
Göran Pulkkis ◽  
Kay J. Grahn ◽  
Jonny Karlsson

In a wired local-area network (LAN), the network ports and cables are mostly contained inside a building. Therefore, a hacker must defeat physical security measures, such as security personnel, identity cards, and door locks, to be able to physically access the LAN. However, the penetration capability of electromagnetic waves exposes the data-transmission medium of a wireless LAN (WLAN) to potential intruders (Potter & Fleck, 2003).

2008 ◽  
pp. 1349-1360
Author(s):  
Göran Pulkkis ◽  
Kaj Grahn ◽  
Jonny Karlsson

In a wired local-area network (LAN), the network ports and cables are mostly contained inside a building. Therefore, a hacker must defeat physical security measures, such as security personnel, identity cards, and door locks, to be able to physically access the LAN. However, the penetration capability of electromagnetic waves exposes the data-transmission medium of a wireless LAN (WLAN) to potential intruders (Potter & Fleck, 2003).


Author(s):  
Göran Pulkkis ◽  
Kaj J. Grahn ◽  
Jonny Karlsson

In a wired local-area network (LAN), the network ports and cables are mostly contained inside a building. Therefore, a hacker must defeat physical security measures, such as security personnel, identity cards, and door locks, to be able to physically access the LAN. However, the penetration capability of electromagnetic waves exposes the data-transmission medium of a wireless LAN (WLAN) to potential intruders (Potter & Fleck, 2003).


Author(s):  
Göran Pulkkis

In a wired local area network (LAN), the network ports and cables are mostly contained inside a building. Therefore, a hacker must defeat physical security measures, such as security personnel, identity cards, and door locks, to be able to physically access the LAN. However, the penetration capability of electromagnetic waves exposes the data transmission medium of a wireless LAN (WLAN) to potential intruders (Potter & Fleck, 2003). The fast development of wireless technologies implies that wireless communications will become ubiquitous in homes, offices, and enterprises. In order to conserve power and frequency spectrum, the wireless device computation overhead is most often reduced. The conventional security design thus uses smaller keys, weak message integrity protocols, and weak or one-way authentication protocols (Hardjono & Dondeti, 2005). WLAN security thus requires a more reliable protection of data communication between WLAN units and strong access management mechanisms.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


2013 ◽  
Vol 278-280 ◽  
pp. 582-585
Author(s):  
Rong Gao ◽  
Qi Sheng Wu ◽  
Lan Bai

A tms320dm642 and wireless fidelity based fire monitoring robot is designed. Flame features, both static and dynamic detecting algorithm, combine with long wave infrared (LWIR) is equipped to achieve the goal of monitoring fire. When the suspected fire event happens, Fire warning message will be sent to remote terminal through the wireless LAN automatically. Infrared image of the fire can be transmitted through the wireless network under the control of remote terminal. As LWIR camera can even look through the dense smoke of fire, fire source will be located accurately, rescuing and fire fighting work will carry on better and with less injury.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Chang-Seop Park ◽  
Hyun-Sun Kang ◽  
Jaijin Jung

A new key management and security scheme is proposed to integrate Layer Two (L2) and Layer Three (L3) keys for secure and fast Mobile IPv6 handover over IEEE 802.11 Wireless Local Area Network (WLAN). Unlike the original IEEE 802.11-based Mobile IPv6 Fast Handover (FMIPv6) that requires time-consuming IEEE 802.1x-based Extensible Authentication Protocol (EAP) authentication on each L3 handover, the newly proposed key management and security scheme requires only one 802.1x-EAP regardless of how many L3 handovers occur. Therefore, the proposed scheme reduces the handover latency that results from a lengthy 802.1x-based EAP. The proposed key management and security scheme is extensively analyzed in terms of security and performance, and the proposed security scheme is shown to be more secure than those that were previously proposed.


2014 ◽  
Vol 721 ◽  
pp. 728-731
Author(s):  
Da Wei Dong ◽  
Xiao Guo Liu ◽  
Tian Jing

To reduce the number of inter-disturb access points and the interference among access points in same channel, with research on interference issus and channel assignment algorithms of wireless local area network, a scheme suitable for centralized wireless local area network was proposed aiming to minimize the total interference among access points, which comprehensively considerate the number of neighbor and the received power. And then the algorithm with cases was simulated and analyzed, the result of NS2 simulation indicated that the algorithm was simple, effective and feasible, which could realize dynamic adjustment to the wireless LAN RF channel and had a better load balance effect among non-overlapping channels.


2012 ◽  
Vol 16 (6) ◽  
pp. 39-45
Author(s):  
A.V. Lazebnyi ◽  
Volodymyr Semenovych Lazebnyi

The concept of a virtual contention window for assessment of temporal and probabilistic characteristics of the processes occurring in the wireless LAN 802.11 is considered. The relations for determining the transmission time delay of the data package, the uneven of transmission time, throughput of wireless channel, the probability of packet loss for networks with saturated load are proposed in this paper.


T-Comm ◽  
2021 ◽  
Vol 15 (7) ◽  
pp. 28-33
Author(s):  
Albina Y. Sharifullina ◽  
◽  
Roman R. Galyamov ◽  
Rimma S. Zaripova ◽  
◽  
...  

This article discusses the stages of development, characteristics of a wireless local area network Wi-Fi, options for its topology and equipment used. Currently, there are such different types of wireless networks as Wireless Wide Area Network, Wireless Metropolitan Area Networks (Wireless Neighborhood Area Network), Wireless Local Area Network, Wireless Personal Area Network. Each of the listed wireless networks has its own specific range and application. Wireless LAN Wi-Fi refers to the Wireless Local Area Network. The first wireless LAN standard, Wi-Fi, was approved in 1997. From the moment of their appearance to the present day, the following standards of this network have appeared: 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ad, 802.11ax. For each standard, the speeds and frequency ranges at which the data transmission was carried out are indicated, and the technologies on which they are built are described. Wireless LAN Wi-Fi has three topologies: 1) Ad-Hoc (point-to-point) or Independent Basic Service Set; 2) Basic Service Set (“client / server”) and 3) Extended Service Set (“extended service areas”). To build a Wi-Fi network, network adapters, access points, routers, ADSL modems, Wi-Fi phones, Wi-Fi antennas, Wi-Fi repeaters are used. Wi-Fi adapters are used by devices that do not have a built-in Wi-Fi module. Wi-Fi access points are designed for organizing wireless access within a local network. Wi-Fi routers are designed to route traffic on a computer network. ADSL modems are used to access the Internet over a telephone line. Wi-Fi repeaters are used to expand the coverage of a wireless network using already installed equipment. Wi-Fi phones are wireless IP phones. Wi-Fi antennas are used to extend the range of a wireless network.


Author(s):  
Osman Goni

A local area network (LAN) is a computer network within a small geographical area such as a home, school, computer laboratory, office building or group of buildings. A LAN is composed of interconnected workstations and personal computers which are each capable of accessing and sharing data and devices, such as printers, scanners and data storage devices, anywhere on the LAN. LANs are characterized by higher communication and data transfer rates and the lack of any need for leased communication lines. Communication between remote parties can be achieved through a process called Networking, involving the connection of computers, media and networking devices. When we talk about networks, we need to keep in mind three concepts, distributed processing, network criteria and network structure. The purpose of this Network is to design a Local Area Network (LAN) for a BAEC (Bangladesh Atomic Energy Commission) Head Quarter and implement security measures to protect network resources and system services. To do so, we will deal with the physical and logical design of a LAN. The goal of this Network is to examine of the Local Area Network set up for a BAEC HQ and build a secure LAN system.


Sign in / Sign up

Export Citation Format

Share Document