A Literature Overview of Fuzzy Database Modeling

2011 ◽  
pp. 167-196
Author(s):  
Z. M. Ma

Fuzzy set theory has been extensively applied to extend various data models and resulted in numerous contributions, mainly with respect to the popular relational model or to some related form of it. To satisfy the need of modeling complex objects with imprecision and uncertainty, recently many researches have been concentrated on fuzzy semantic (conceptual) and object-oriented data models. This chapter reviews fuzzy database modeling technologies, including fuzzy conceptual data models and database models. Concerning fuzzy database models, fuzzy relational databases, fuzzy nested relational databases, and fuzzy object-oriented databases are discussed, respectively.

2008 ◽  
pp. 187-207 ◽  
Author(s):  
Z.. M. Ma

Fuzzy set theory has been extensively applied to extend various data models and resulted in numerous contributions, mainly with respect to the popular relational model or to some related form of it. To satisfy the need of modeling complex objects with imprecision and uncertainty, recently many researches have been concentrated on fuzzy semantic (conceptual) and object-oriented data models. This chapter reviews fuzzy database modeling technologies, including fuzzy conceptual data models and database models. Concerning fuzzy database models, fuzzy relational databases, fuzzy nested relational databases, and fuzzy object-oriented databases are discussed, respectively.


2009 ◽  
pp. 105-125 ◽  
Author(s):  
Z.M. Ma

Fuzzy set theory has been extensively applied to extend various data models and resulted in numerous contributions, mainly with respect to the popular relational model or to some related form of it. To satisfy the need of modeling complex objects with imprecision and uncertainty, recently many researches have been concentrated on fuzzy semantic (conceptual) and object-oriented data models. This chapter reviews fuzzy database modeling technologies, including fuzzy conceptual data models and database models. Concerning fuzzy database models, fuzzy relational databases, fuzzy nested relational databases, and fuzzy object-oriented databases are discussed, respectively.


Author(s):  
Antonio Sarasa-Cabezuelo

The appearance of the “big data” phenomenon has meant a change in the storage and information processing needs. This new context is characterized by 1) enormous amounts of information are available in heterogeneous formats and types, 2) information must be processed almost in real time, and 3) data models evolve periodically. Relational databases have limitations to respond to these needs in an optimal way. For these reasons, some companies such as Google or Amazon decided to create new database models (different from the relational model) that solve the needs raised in the context of big data without the limitations of relational databases. These new models are the origin of the so-called NonSQL databases. Currently, NonSQL databases have been constituted as an alternative mechanism to the relational model and its use is widely extended. The main objective of this chapter is to introduce the NonSQL databases.


2009 ◽  
pp. 338-361
Author(s):  
Z. M. Ma

Information systems have become the nerve center of current computer-based engineering applications, which hereby put the requirements on engineering information modeling. Databases are designed to support data storage, processing, and retrieval activities related to data management, and database systems are the key to implementing engineering information modeling. It should be noted that, however, the current mainstream databases are mainly used for business applications. Some new engineering requirements challenge today’s database technologies and promote their evolvement. Database modeling can be classified into two levels: conceptual data modeling and logical database modeling. In this chapter, we try to identify the requirements for engineering information modeling and then investigate the satisfactions of current database models to these requirements at two levels: conceptual data models and logical database models. In addition, the relationships among the conceptual data models and the logical database models for engineering information modeling are presented in the chapter viewed from database conceptual design.


Author(s):  
Esperenza Marcos ◽  
Paloma Caceres

In spite of the fact that relational databases still hold the first place in the market, object-oriented databases are becoming, each day, more widely accepted. Relational databases are suitable for traditional applications supporting management tasks such as payroll or library management. Recently, as a result of hardware improvements, more sophisticated applications have emerged. Engineering applications, such as CAD/CAM (Computer Aided Design/ Computer Aided Manufacturing), CASE (Computer Aided Software Engineering) or CIM (Computer Integrating Manufacturing), office automation systems, multimedia systems such as GIS (Geographic Information Systems) or medical information systems, can be characterized as consisting of complex objects related by complex interrelationships. Representing such objects and relationships in the relational model implies that the objects must be decomposed into a large number of tuples. Thus, a considerable number of joins is necessary to retrieve an object and, when tables are too deeply nested, performance is dramatically reduced (Bertino and Marcos, 2000).


Author(s):  
Reda Alhajj ◽  
Faruk Polat

We present an approach to transfer content of an existing conventional relational database to a corresponding existing object-oriented database. The major motivation is having organizations with two generations of information systems; the first is based on the relational model, and the second is based on the object-oriented model. This has several drawbacks. First, it is impossible to get unified global reports that involve information from the two databases without providing a wrapper that facilitates accessing one of the databases within the realm of the other. Second, organizations should keep professional staff familiar with the system. Finally, most of the people familiar with the conventional relational technology are willing to learn and move to the emerging object-oriented technology. Therefore, one appropriate solution is to transfer content of conventional relational databases into object-oriented databases; the latter are extensible by nature, hence, are more flexible to maintain. However, it is very difficult to extend and maintain a conventional relational database.


Author(s):  
Z.M. Ma

Information systems have become the nerve center of current computer-based engineering applications, which hereby put the requirements on engineering information modeling. Databases are designed to support data storage, processing, and retrieval activities related to data management, and database systems are the key to implementing engineering information modeling. It should be noted that, however, the current mainstream databases are mainly used for business applications. Some new engineering requirements challenge today’s database technologies and promote their evolvement. Database modeling can be classified into two levels: conceptual data modeling and logical database modeling. In this chapter, we try to identify the requirements for engineering information modeling and then investigate the satisfactions of current database models to these requirements at two levels: conceptual data models and logical database models. In addition, the relationships among the conceptual data models and the logical database models for engineering information modeling are presented in the chapter viewed from database conceptual design.


Author(s):  
Z. M. Ma

A major goal for database research has been the incorporation of additional semantics into the data model. Classical data models often suffer from their incapability of representing and manipulating imprecise and uncertain information that may occur in many real-world applications. Since the early 1980s, Zadeh’s fuzzy logic (Zadeh, 1965) has been used to extend various data models. The purpose of introducing fuzzy logic in database modeling was to enhance the classical models such that uncertain and imprecise information can be represented and manipulated. This resulted in numerous contributions, mainly with respect to the popular relational model or to some related form of it.


2008 ◽  
pp. 1182-1204
Author(s):  
Z. M. Ma

Information systems have become the nerve center of current computer-based engineering applications, which hereby put the requirements on engineering information modeling. Databases are designed to support data storage, processing, and retrieval activities related to data management, and database systems are the key to implementing engineering information modeling. It should be noted that, however, the current mainstream databases are mainly used for business applications. Some new engineering requirements challenge today’s database technologies and promote their evolvement. Database modeling can be classified into two levels: conceptual data modeling and logical database modeling. In this chapter, we try to identify the requirements for engineering information modeling and then investigate the satisfactions of current database models to these requirements at two levels: conceptual data models and logical database models. In addition, the relationships among the conceptual data models and the logical database models for engineering information modeling are presented in the chapter viewed from database conceptual design.


Author(s):  
Z. M. Ma

Information systems have become the nerve center of current computer-based engineering applications, which hereby put the requirements on engineering information modeling. Databases are designed to support data storage, processing, and retrieval activities related to data management, and database systems are the key to implementing engineering information modeling. It should be noted that, however, the current mainstream databases are mainly used for business applications. Some new engineering requirements challenge today’s database technologies and promote their evolvement. Database modeling can be classified into two levels: conceptual data modeling and logical database modeling. In this chapter, we try to identify the requirements for engineering information modeling and then investigate the satisfactions of current database models to these requirements at two levels: conceptual data models and logical database models. In addition, the relationships among the conceptual data models and the logical database models for engineering information modeling are presented in the chapter viewed from database conceptual design.


Sign in / Sign up

Export Citation Format

Share Document