What is Different about Web and Software Projects?

Author(s):  
Emilia Mendes

The objective of this chapter is threefold. First is to introduce new terminology that relates specifically to hypertext, the model the Web is based upon. Second, it provides an overview of differences between Web and software development with respect to their development processes, technologies, quality factors, and measures. Third, it discusses the differences between Web effort estimation and software effort estimation.

2018 ◽  
Vol 27 (3) ◽  
pp. 489-506 ◽  
Author(s):  
Thanh Tung Khuat ◽  
My Hanh Le

Abstract In modern software development processes, software effort estimation plays a crucial role. The success or failure of projects depends greatly on the accuracy of effort estimation and schedule results. Many studies focused on proposing novel models to enhance the accuracy of predicted results; however, the question of accurate estimation of effort has been a challenging issue with regards to researchers and practitioners, especially when it comes to projects using agile methodologies. This study aims at introducing a novel formula based on team velocity and story point factors. The parameters of this formula are then optimized by employing swarm optimization algorithms. We also propose an improved algorithm combining the advantages of the artificial bee colony and particle swarm optimization algorithms. The experimental results indicated that our approaches outperformed methods in other studies in terms of the accuracy of predicted results.


2016 ◽  
Vol 13 (10) ◽  
pp. 7093-7098 ◽  
Author(s):  
Shivakumar Nagarajan ◽  
Balaji Narayanan

Software development effort estimation is the way of predicting the effort to improve software economics. Accurate estimation of effort is the most tedious tasks in software projects. However, several methods are used to estimate the software development effort accurately. Imprecise estimation can leads to project failure due to uncertain data. In this paper, a hybrid model based on combination of Particle Swarm Optimization (PSO), K-means clustering algorithms, neural network and ABE method is proposed. The proposed method can be useful to predict better clustering and more accurate estimation and hence, there are difficulties in clustering and outliers in the software projects. The obtained results showed the better clustering result which provides the estimation result accurately. Then, neural network and Analogy methods are used which enhance the accuracy significantly.


Author(s):  
FATIMA AZZAHRA AMAZAL ◽  
ALI IDRI ◽  
ALAIN ABRAN

Software effort estimation is one of the most important tasks in software project management. Of several techniques suggested for estimating software development effort, the analogy-based reasoning, or Case-Based Reasoning (CBR), approaches stand out as promising techniques. In this paper, the benefits of using linguistic rather than numerical values in the analogy process for software effort estimation are investigated. The performance, in terms of accuracy and tolerance of imprecision, of two analogy-based software effort estimation models (Classical Analogy and Fuzzy Analogy, which use numerical and linguistic values respectively to describe software projects) is compared. Three research questions related to the performance of these two models are discussed and answered. This study uses the International Software Benchmarking Standards Group (ISBSG) dataset and confirms the usefulness of using linguistic instead of numerical values in analogy-based software effort estimation models.


Still in this 21st century, it is a great challenge for the Project Managers to make the software projects successful. The success of software projects relies on how accurately the estimates of effort, cost and duration can be made. Most of the standard surveys stated that only 30-40% of software projects are successful and the remaining are either challenged, cancelled or failed. One of the key reasons for failure of projects is inaccurate estimations. Effort Estimation should be carried out in the early stage of Software Development Life Cycle (SDLC) and it is an essential activity to establish scope & business case of software project management activities. Over estimation or under estimation leads to failure of the software projects. Many of the stakeholders are expecting the estimation of development effort in early stage for their better bidding. There are many methodologies like KLOC, Use Case Points (UCP), Class Points, Story Points, Test Case Points, Functional Points (FP), etc. to estimate effort in the software development. To estimate the effort in the early stage of software development, UCP, Story Points and FP are more preferable. The methods for estimation may be adopted based on the project complexity, functionality, approaches etc. In order to achieve an efficient and reliable effort estimate and thereby have a proper execution of software development plan, Soft Computing Techniques can be adopted in the various organizations and different research domains. In this paper, Functional Points have been selected for effort estimation and implemented using soft computing techniques like Neural Networks and Neuro Fuzzy techniques. After examination the results are evaluated using different error measures like VAF,MMRE,RAE, RRSE and PRED. Basing on results it is observed that the Neuro Fuzzy techniques provided better effort estimates


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1195
Author(s):  
Priya Varshini A G ◽  
Anitha Kumari K ◽  
Vijayakumar Varadarajan

Software Project Estimation is a challenging and important activity in developing software projects. Software Project Estimation includes Software Time Estimation, Software Resource Estimation, Software Cost Estimation, and Software Effort Estimation. Software Effort Estimation focuses on predicting the number of hours of work (effort in terms of person-hours or person-months) required to develop or maintain a software application. It is difficult to forecast effort during the initial stages of software development. Various machine learning and deep learning models have been developed to predict the effort estimation. In this paper, single model approaches and ensemble approaches were considered for estimation. Ensemble techniques are the combination of several single models. Ensemble techniques considered for estimation were averaging, weighted averaging, bagging, boosting, and stacking. Various stacking models considered and evaluated were stacking using a generalized linear model, stacking using decision tree, stacking using a support vector machine, and stacking using random forest. Datasets considered for estimation were Albrecht, China, Desharnais, Kemerer, Kitchenham, Maxwell, and Cocomo81. Evaluation measures used were mean absolute error, root mean squared error, and R-squared. The results proved that the proposed stacking using random forest provides the best results compared with single model approaches using the machine or deep learning algorithms and other ensemble techniques.


2015 ◽  
Vol 6 (4) ◽  
pp. 39-68 ◽  
Author(s):  
Maryam Hassani Saadi ◽  
Vahid Khatibi Bardsiri ◽  
Fahimeh Ziaaddini

One of the major activities in effective and efficient production of software projects is the precise estimation of software development effort. Estimation of the effort in primary steps of software development is one of the most important challenges in managing software projects. Some reasons for these challenges such as: discordant software projects, the complexity of the manufacturing process, special role of human and high level of obscure and unusual features of software projects can be noted. Predicting the necessary efforts to develop software using meta-heuristic optimization algorithms has made significant progressions in this field. These algorithms have the potent to be used in estimation of the effort of the software. The necessity to increase estimation precision urged the authors to survey the efficiency of some meta-heuristic optimization algorithms and their effects on the software projects. To do so, in this paper, they investigated the effect of combining various optimization algorithms such as genetic algorithm, particle swarm optimization algorithm and ant colony algorithm on different models such as COCOMO, estimation based on analogy, machine learning methods and standard estimation models. These models have employed various data sets to evaluate the results such as COCOMO, Desharnais, NASA, Kemerer, CF, DPS, ISBSG and Koten & Gary. The results of this survey can be used by researchers as a primary reference.


Author(s):  
Alf Inge Wang ◽  
Carl-Fredrik Sørensen

This chapter presents a framework for differentiated process support in large software projects. Process support can be differentiated in different levels based on the size of the development organization and the need for coordination across different levels of the organization. We have defined four main perspectives: individual, group, team, and project level, where the framework consider essential issues when planning and executing the software development processes in organizations with different levels of management. Further, a guideline is provided that suggests what is required of process support in the various organizational levels.


2009 ◽  
pp. 2359-2378
Author(s):  
Alf Inge Wang ◽  
Carl-Fredrik Sørensen

This chapter presents a framework for differentiated process support in large software projects. Process support can be differentiated in different levels based on the size of the development organization and the need for coordination across different levels of the organization. We have defined four main perspectives: individual, group, team, and project level, where the framework consider essential issues when planning and executing the software development processes in organizations with different levels of management. Further, a guideline is provided that suggests what is required of process support in the various organizational levels.


Sign in / Sign up

Export Citation Format

Share Document