software development effort
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 54)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Vol 31 (2) ◽  
pp. 1-39
Author(s):  
Olawole Oni ◽  
Emmanuel Letier

Release planning—deciding what features to implement in upcoming releases of a software system—is a critical activity in iterative software development. Many release planning methods exist, but most ignore the inevitable uncertainty in estimating software development effort and business value. The article’s objective is to study whether analyzing uncertainty during release planning generates better release plans than if uncertainty is ignored. To study this question, we have developed a novel release planning method under uncertainty, called BEARS, that models uncertainty using Bayesian probability distributions and recommends release plans that maximize expected net present value and expected punctuality. We then compare release plans recommended by BEARS to those recommended by methods that ignore uncertainty on 32 release planning problems. The experiment shows that BEARS recommends release plans with higher expected net present value and expected punctuality than methods that ignore uncertainty, thereby indicating the harmful effects of ignoring uncertainty during release planning. These results highlight the importance of eliciting and analyzing uncertainty in software effort and value estimations and call for increased research in these areas.


2022 ◽  
pp. 306-328
Author(s):  
Anupama Kaushik ◽  
Devendra Kumar Tayal ◽  
Kalpana Yadav

In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.


2022 ◽  
pp. 165-193
Author(s):  
Kamlesh Dutta ◽  
Varun Gupta ◽  
Vachik S. Dave

Prediction of software development is the key task for the effective management of any software industry. The accuracy and reliability of the prediction mechanisms used for the estimation of software development effort is also important. A series of experiments are conducted to gradually progress towards the improved accurate estimation of the software development effort. However, while conducting these experiments, it was found that the size of the training set was not sufficient to train a large and complex artificial neural network (ANN). To overcome the problem of the size of the available training data set, a novel multilayered architecture based on a neural network model is proposed. The accuracy of the proposed multi-layered model is assessed using different criteria, which proves the pre-eminence of the proposed model.


2022 ◽  
pp. 947-969
Author(s):  
Anupama Kaushik ◽  
Devendra Kumar Tayal ◽  
Kalpana Yadav

In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2119
Author(s):  
Petr Silhavy ◽  
Radek Silhavy ◽  
Zdenka Prokopova

Software development effort estimation is essential for software project planning and management. In this study, we present a spectral clustering algorithm based on symmetric matrixes as an option for data processing. It is expected that constructing an estimation model on more similar data can increase the estimation accuracy. The research methods employ symmetrical data processing and experimentation. Four experimental models based on function point analysis, stepwise regression, spectral clustering, and categorical variables have been conducted. The results indicate that the most advantageous variant is a combination of stepwise regression and spectral clustering. The proposed method provides the most accurate estimates compared to the baseline method and other tested variants.


Author(s):  
Zainab Rustum Mohsin

Modeling software development effort estimation models has been a hot research topic over the last three decades. Numerous models were proposed in these decades to predict the effort. The key challenges for future software development is providing accurate software estimation. Failure to acknowledge the accuracy of effort estimation can cause inaccurate estimation, customer disappointment, and poor software development or project failure. This research presents a novel computational technique, named adaptive neuro-fuzzy inference system (ANFIS), for the modeling of software effort estimation. It was developed utilizing the Constructive Cost Model (COCOMO) dataset. The data were randomly divided into two sets: 83% for training and 17% for testing. The mean magnitude relative-error (MMRE) and the coefficient of correlation (R) were used as assessment indices. Results showed that the accuracy of the proposed model is quite satisfactory in comparison with actual values. Moreover, a comparison study was conducted with another approach. The results showed that ANFIS produced better results in comparison with Function Point Analysis, Software Lifecycle Management, and COCOMO methods. ANFIS was found to be a potential predictive model for software development effort estimation.


Sign in / Sign up

Export Citation Format

Share Document