Towards More Intelligent Assessment Systems

2008 ◽  
pp. 258-283
Author(s):  
Sonya Radenkovic ◽  
Nenad Krdžavac ◽  
Vladan Devedžic

This chapter presents a framework for intelligent analysis of the students’ knowledge in assessment systems, using description logics (DLs) reasoning techniques. The framework is based on Model Driven Architecture (MDA) software engineering standards. It starts from the IMS Question and Test Interoperability (QTI) standard and includes MDA-based metamodel and model transformations for QTI assessment systems. It also specifies an architecture for QTI assessment systems that is reusable, extensible, and facilitates interoperability between its component systems. An implementation of the QTI metamodel and the relevant example of transformations is provided in order to support developments according to the proposed framework.

Author(s):  
Yashwant Singh ◽  
Manu Sood

The Model-Driven Architecture approach to software development uses transformation models for transforming Platform-Independent Models (PIM) into Platform-Specific Models (PSM) as its core software development strategy. The Model-Driven Architecture (MDA) approach and corresponding standards of the software development based on models have been initiated by the Object Management Group. In this chapter, the authors analyze the basic models of MDA (i.e., Computational Independent Model [CIM], PIM, and PSM) using a suitable example and formalize the model transformations for transforming PIM into PSM. These transformations have been illustrated through the generation of a Relational Model, an Enterprise Java Bean (EJB) Model, and a Web Model from PIM for the example under consideration, using UML profile, and keeping in mind the property of reusability of models in MDA transformations. The focus has been on the specification and formalization of rules needed to get the Relational PSM, EJB PSM, and Web PSM from PIM. A transformation tool, whose functionality of transformation of PIM into Relational PSM, EJB PSM, and Web PSM, is illustrated in this chapter.


Author(s):  
Justinas Janulevicius ◽  
Simona Ramanauskaite ◽  
Nikolaj Goranin ◽  
Antanas Cenys

Model-Driven Engineering uses models in various stages of the software engineering. To reduce the cost of modelling and production, models are reused by transforming. Therefore the accuracy of model transformations plays a key role in ensuring the quality of the process. However, problems exist when trying to transform a very abstract and content dependent model. This paper describes the issues arising from such transformations. Solutions to solve problems in content based model transformation are proposed as well. The usage of proposed solutions allowing realization of semi-automatic transformations was integrated into a tool, designed for OPC/XML drawing file transformations to CySeMoL models. The accuracy of transformations in this tool has been analyzed and presented in this paper to acquire data on the proposed solutions influence to the accuracy in content based model transformation.


Author(s):  
Aarón Montalvo ◽  
Pablo Parra ◽  
Óscar Rodríguez Polo ◽  
Alberto Carrasco ◽  
Antonio Da Silva ◽  
...  

AbstractThe development process of on-board software applications can benefit from model-driven engineering techniques. Model validation and model transformations can be applied to drive the activities of specification, requirements definition, and system-level validation and verification according to the space software engineering standards ECSS-E-ST-40 and ECSS-Q-ST-80. This paper presents a model-driven approach to completing these activities by avoiding inconsistencies between the documents that support them and providing the ability to automatically generate the system-level validation tests that are run on the Ground Support Equipment and the matrices required to complete the software verification. A demonstrator of the approach has been built using as a proof of concept a subset of the functionality of the software of the control unit of the Energetic Particle Detector instrument on-board Solar Orbiter.


2016 ◽  
Vol 19 (1) ◽  
pp. 15-24
Author(s):  
Artūrs Solomencevs

Abstract The approach called “Topological Functioning Model for Software Engineering” (TFM4SE) applies the Topological Functioning Model (TFM) for modelling the business system in the context of Model Driven Architecture. TFM is a mathematically formal computation independent model (CIM). TFM4SE is compared to an approach that uses BPMN as a CIM. The comparison focuses on CIM modelling and on transformation to UML Sequence diagram on the platform independent (PIM) level. The results show the advantages and drawbacks the formalism of TFM brings into the development.


Computers ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 89 ◽  
Author(s):  
Imane Essebaa ◽  
Salima Chantit ◽  
Mohammed Ramdani

Model-driven engineering (MDE) uses models during the application development process. Thus, the MDE is particularly based on model-driven architecture (MDA), which is one of the important variants of the Object Management Group (OMG). MDA aims to generate source code from abstract models through several model transformations between, and inside the different MDA levels: computation independent model (CIM), platform independent model (PIM), and platform specific model (PSM) before code. In this context, several methods and tools were proposed in the literature and in the industry that aim to automatically generate the source code from the MDA levels. However, researchers still meet many constraints—model specifications, transformation automation, and level traceability. In this paper, we present a tool support, the model-driven architecture for web application (MoDAr-WA), that implements our proposed approach, aiming to automate transformations from the highest MDA level (CIM) to the lowest one (code) to ensure traceability. This paper is a continuity of our previous works, where we automate transformation from the CIM level to the PIM level. For this aim, we present a set of meta-models, QVT and Acceleo transformations, as well as the tools used to develop our Eclipse plug-in, MoDAr-WA. In particular, we used QVT rules for transformations between models and Acceleo for generating code from models. Finally, we use MoDAr-WA to apply the proposed approach to the MusicStore system case study and compare the generated code from CIM to the original application code.


Author(s):  
Djedjiga Mouheb ◽  
Mourad Debbabi ◽  
Makan Pourzandi ◽  
Lingyu Wang ◽  
Mariam Nouh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document