Fuzzy Decision Trees

Author(s):  
Malcolm J. Beynon

The inductive learning methodology known as decision trees, concerns the ability to classify objects based on their attributes values, using a tree like structure from which decision rules can be accrued. In this article, a description of decision trees is given, with the main emphasis on their operation in a fuzzy environment. A first reference to decision trees is made in Hunt et al. (1966), who proposed the Concept learning system to construct a decision tree that attempts to minimize the score of classifying chess endgames. The example problem concerning chess offers early evidence supporting the view that decision trees are closely associated with artificial intelligence (AI). It is over ten years later that Quinlan (1979) developed the early work on decision trees, to introduced the Interactive Dichotomizer 3 (ID3). The important feature with their development was the use of an entropy measure to aid the decision tree construction process (using again the chess game as the considered problem). It is ID3, and techniques like it, that defines the hierarchical structure commonly associated with decision trees, see for example the recent theoretical and application studies of Pal and Chakraborty (2001), Bhatt and Gopal (2005) and Armand et al. (2007). Moreover, starting from an identified root node, paths are constructed down to leaf nodes, where the attributes associated with the intermediate nodes are identified through the use of an entropy measure to preferentially gauge the classification certainty down that path. Each path down to a leaf node forms an ‘if .. then ..’ decision rule used to classify the objects. The introduction of fuzzy set theory in Zadeh (1965), offered a general methodology that allows notions of vagueness and imprecision to be considered. Moreover, Zadeh’s work allowed the possibility for previously defined techniques to be considered with a fuzzy environment. It was over ten years later that the area of decision trees benefited from this fuzzy environment opportunity (see Chang and Pavlidis, 1977). Since then there has been a steady stream of research studies that have developed or applied fuzzy decision trees (FDTs) (see recently for example Li et al., 2006 and Wang et al., 2007). The expectations that come with the utilisation of FDTs are succinctly stated by Li et al. (2006, p. 655); “Decision trees based on fuzzy set theory combines the advantages of good comprehensibility of decision trees and the ability of fuzzy representation to deal with inexact and uncertain information.” Chiang and Hsu (2002) highlight that decision trees has been successfully applied to problems in artificial intelligence, pattern recognition and statistics. They go onto outline a positive development the FDTs offer, namely that it is better placed to have an estimate of the degree that an object is associated with each class, often desirable in areas like medical diagnosis (see Quinlan (1987) for the alternative view with respect to crisp decision trees). The remains of this article look in more details at FDTs, including a tutorial example showing the rudiments of how an FDT can be constructed.

Author(s):  
Malcolm J. Beynon

The seminal work of Zadeh (1965), fuzzy set theory (FST) has developed into a methodology fundamental to analysis that incorporates vagueness and ambiguity. With respect to the area of data mining, it endeavours to find potentially meaningful patterns from data (Hu & Tzeng, 2003). This includes the construction of if-then decision rule systems, which attempt a level of inherent interpretability to the antecedents and consequents identified for object classification (and prediction), (see Breiman 2001).


Author(s):  
Malcolm J. Beynonm

The seminal work of Zadeh (1965), namely fuzzy set theory (FST), has developed into a methodology fundamental to analysis that incorporates vagueness and ambiguity. With respect to the area of data mining, it endeavours to find potentially meaningful patterns from data (Hu & Tzeng, 2003). This includes the construction of if-then decision rule systems, which attempt a level of inherent interpretability to the antecedents and consequents identified for object classification (See Breiman, 2001). Within a fuzzy environment this is extended to allow a linguistic facet to the possible interpretation, examples including mining time series data (Chiang, Chow, & Wang, 2000) and multi-objective optimisation (Ishibuchi & Yamamoto, 2004). One approach to if-then rule construction has been through the use of decision trees (Quinlan, 1986), where the path down a branch of a decision tree (through a series of nodes), is associated with a single if-then rule. A key characteristic of the traditional decision tree analysis is that the antecedents described in the nodes are crisp, where this restriction is mitigated when operating in a fuzzy environment (Crockett, Bandar, Mclean, & O’Shea, 2006). This chapter investigates the use of fuzzy decision trees as an effective tool for data mining. Pertinent to data mining and decision making, Mitra, Konwar and Pal (2002) succinctly describe a most important feature of decision trees, crisp and fuzzy, which is their capability to break down a complex decision-making process into a collection of simpler decisions and thereby, providing an easily interpretable solution.


Author(s):  
Malcolm Beynon

The general fuzzy decision tree approach encapsulates the benefits of being an inductive learning technique to classify objects, utilising the richness of the data being considered, as well as the readability and interpretability that accompanies its operation in a fuzzy environment. This chapter offers a description of fuzzy decision tree based research, including the exposition of small and large fuzzy decision trees to demonstrate their construction and practicality. The two large fuzzy decision trees described are associated with a real application, namely, the identification of workplace establishments in the United Kingdom that pay a noticeable proportion of their employees less than the legislated minimum wage. Two separate fuzzy decision tree analyses are undertaken on a low-pay database, which utilise different numbers of membership functions to fuzzify the continuous attributes describing the investigated establishments. The findings demonstrate the sensitivity of results when there are changes in the compactness of the fuzzy representation of the associated data.


Author(s):  
Malcolm J. Beynon

The first (crisp) decision tree techniques were introduced in the 1960s (Hunt, Marin, & Stone, 1966), their appeal to decision makers is due in no part to their comprehensibility in classifying objects based on their attribute values (Janikow, 1998). With early techniques such as the ID3 algorithm (Quinlan, 1979), the general approach involves the repetitive partitioning of the objects in a data set through the augmentation of attributes down a tree structure from the root node, until each subset of objects is associated with the same decision class or no attribute is available for further decomposition, ending in a number of leaf nodes. This article considers the notion of decision trees in a fuzzy environment (Zadeh, 1965). The first fuzzy decision tree (FDT) reference is attributed to Chang and Pavlidis (1977), which defined a binary tree using a branch-bound-backtrack algorithm, but limited instruction on FDT construction. Later developments included fuzzy versions of crisp decision techniques, such as fuzzy ID3, and so forth (see Ichihashi, Shirai, Nagasaka, & Miyoshi, 1996; Pal & Chakraborty, 2001) and other versions (Olaru & Wehenkel, 2003).


2014 ◽  
Vol 6 (4) ◽  
pp. 346 ◽  
Author(s):  
Swathi Jamjala Narayanan ◽  
Rajen B. Bhatt ◽  
Ilango Paramasivam ◽  
M. Khalid ◽  
B.K. Tripathy

2005 ◽  
Vol 13 (1) ◽  
pp. 23-56 ◽  
Author(s):  
Badredine Arfi

In this article I use linguistic fuzzy-set theory to analyze the process of decision making in politics. I first introduce a number of relevant elements of (numerical and linguistic) fuzzy-set theory that are needed to understand the terminology as well as to grasp the scope and depth of the approach. I then explicate a linguistic fuzzy-set approach (LFSA) to the process of decision making under conditions in which the decision makers are required to simultaneously satisfy multiple criteria. The LFSA approach is illustrated through a running (hypothetical) example of a situation in which state leaders need to decide how to combine trust and power to make a choice on security alignment.


2016 ◽  
Vol 5 (3) ◽  
pp. 30-41 ◽  
Author(s):  
Priti Gupta ◽  
Pratiksha Tiwari

Decision making involves various attributes along with several decision takers. Recently it has become more complex. This gives raise to uncertainty and associated with the information provided. So it may be appropriate to suggest that uncertainty demonstrates itself in numerous forms and of different types. Uncertainties may arise due to human behaviour, fluctuations of information, unknown facts. Fuzzy set theory is tool to deal with uncertainty in a better way. Both Fuzzy set theory and information theory are involved in dealing with various real-world problems such as segmentation of images, medical diagnosis, managerial decision making etc. Several methods and concepts dealing with imprecision and uncertainty have been proposed by many researchers. In the present communication, the authors have proposed a parametric generalization of entropy introduced by De Luca and Termini along with its basic properties. Further, a new measure of weighted coefficient of correlation is developed and applied to solve decision making problems involving uncertainty.


1990 ◽  
Vol 20 (1) ◽  
pp. 33-55 ◽  
Author(s):  
Jean Lemaire

AbstractFuzzy set theory is a recently developed field of mathematics, that introduces sets of objects whose boundaries are not sharply defined. Whereas in ordinary Boolean algebra an element is either contained or not contained in a given set, in fuzzy set theory the transition between membership and non-membership is gradual. The theory aims at modelizing situations described in vague or imprecise terms, or situations that are too complex or ill-defined to be analysed by conventional methods. This paper aims at presenting the basic concepts of the theory in an insurance framework. First the basic definitions of fuzzy logic are presented, and applied to provide a flexible definition of a “preferred policyholder” in life insurance. Next, fuzzy decision-making procedures are illustrated by a reinsurance application, and the theory of fuzzy numbers is extended to define fuzzy insurance premiums.


Sign in / Sign up

Export Citation Format

Share Document