A Novel Recurrent Polynomial Neural Network for Financial Time Series Prediction

Author(s):  
Abir Hussain ◽  
Panos Liatsis

The research described in this chapter is concerned with the development of a novel artificial higherorder neural networks architecture called the recurrent Pi-sigma neural network. The proposed artificial neural network combines the advantages of both higher-order architectures in terms of the multi-linear interactions between inputs, as well as the temporal dynamics of recurrent neural networks, and produces highly accurate one-step ahead predictions of the foreign currency exchange rates, as compared to other feedforward and recurrent structures.

Author(s):  
Panos Liatsis ◽  
Abir Hussain ◽  
Efstathios Milonidis

The research described in this chapter is concerned with the development of a novel artificial higher order neural networks architecture called the second-order pipeline recurrent neural network. The proposed artificial neural network consists of a linear and a nonlinear section, extracting relevant features from the input signal. The structuring unit of the proposed neural network is the second-order recurrent neural network. The architecture consists of a series of second-order recurrent neural networks, which are concatenated with each other. Simulation results in one-step ahead predictions of the foreign currency exchange rates demonstrate the superior performance of the proposed pipeline architecture as compared to other feed-forward and recurrent structures.


2020 ◽  
Vol 12 (6) ◽  
pp. 21-32
Author(s):  
Muhammad Zulqarnain ◽  
◽  
Rozaida Ghazali ◽  
Muhammad Ghulam Ghouse ◽  
Yana Mazwin Mohmad Hassim ◽  
...  

Financial time-series prediction has been long and the most challenging issues in financial market analysis. The deep neural networks is one of the excellent data mining approach has received great attention by researchers in several areas of time-series prediction since last 10 years. “Convolutional neural network (CNN) and recurrent neural network (RNN) models have become the mainstream methods for financial predictions. In this paper, we proposed to combine architectures, which exploit the advantages of CNN and RNN simultaneously, for the prediction of trading signals. Our model is essentially presented to financial time series predicting signals through a CNN layer, and directly fed into a gated recurrent unit (GRU) layer to capture long-term signals dependencies. GRU model perform better in sequential learning tasks and solve the vanishing gradients and exploding issue in standard RNNs. We evaluate our model on three datasets for stock indexes of the Hang Seng Indexes (HSI), the Deutscher Aktienindex (DAX) and the S&P 500 Index range 2008 to 2016, and associate the GRU-CNN based approaches with the existing deep learning models. Experimental results present that the proposed GRU-CNN model obtained the best prediction accuracy 56.2% on HIS dataset, 56.1% on DAX dataset and 56.3% on S&P500 dataset respectively.


IERI Procedia ◽  
2014 ◽  
Vol 10 ◽  
pp. 239-244 ◽  
Author(s):  
Mehreen Rehman ◽  
Gul Muhammad Khan ◽  
Sahibzada Ali Mahmud

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Wang ◽  
Jun Wang ◽  
Wen Fang ◽  
Hongli Niu

In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul A. Sarker ◽  
Rezaul K. Begg

In today’s global market economy, currency exchange rates play a vital role in national economy of the trading nations. In this chapter, we present an overview of neural network-based forecasting models for foreign currency exchange (forex) rates. To demonstrate the suitability of neural network in forex forecasting, a case study on the forex rates of six different currencies against the Australian dollar is presented. We used three different learning algorithms in this case study, and a comparison based on several performance metrics and trading profitability is provided. Future research direction for enhancement of neural network models is also discussed.


Sign in / Sign up

Export Citation Format

Share Document