Frequency-Reponse Masking Techniques

Author(s):  
Ljiljana Milic

The initial concept of the frequency-response masking technique was introduced by Neuvo, Cheng-Yu and Mitra (1984). It was shown that the complexity of a linear phase FIR filter can be considerably reduced by using the cascade connection of an interpolated FIR (IFIR) filter and a properly designed FIR filter. The IFIR filter transfer function is obtained by replacing the unit delay z-1 with the delay block z-M, where M is an integer. In this way, the frequency response of the IFIR filter is made periodic. The FIR filter in the cascade is used to eliminate (mask) the images from the IFIR filter frequency response. Two years later, Lim (1986) proposed a complete approach for the application of frequency-response masking technique in designing narrow-band and arbitrary-band linear phase FIR filters. It was shown that the approach given in (Lim, 1986) results in a linear phase FIR filter with a small fraction of nonzero coefficients, and thus is suitable for implementing sharp filters with arbitrary bandwidths. The arithmetic complexity is considerably smaller in comparison with the arithmetic complexity of an optimal FIR filter having the equivalent frequency response. This approach is applied later to IIR filters by Johansson and Wanhammar (1997, 2000). The overall filter is composed of an IIR periodic model filter and its complementary periodic filter, and FIR linearphase masking filters. In this way, the arbitrary-band filter can be designed. For a narrowband filter, the cascade of a periodic filter and masking filter can be used. The frequency-response masking approach is suitable for digital filters with sharp transition bands. Compared to the classical single-filter design, this technique offers the advantage of lower coefficients’ sensitivity, higher computation speed and lower power consumption. Recently, the application of frequency-response masking approach has been extended to filter banks to achieve a sharp band-separation with reduced computational complexity (Furtado, Diniz, Netto, and Saramäki, T. 2005; Rosenbaum, Lövenborg, and Johansson, 2007). In this chapter, we review the frequency-response masking techniques for narrow-band and arbitrary bandwidth IIR filters. We demonstrate through examples that very selective characteristics can be obtained using relatively low-order sub-filters. In this way, stable, low-sensitive filters are obtained.

2003 ◽  
Vol 12 (05) ◽  
pp. 601-630 ◽  
Author(s):  
OSCAR GUSTAFSSON ◽  
HÅKAN JOHANSSON ◽  
LARS WANHAMMAR

In this work filter structures that decrease the required number of multipliers and adders for implementation of linear-phase FIR filters using frequency-response masking techniques are introduced. The basic idea of the proposed structures is that identical subfilters are used. This leads to the same arithmetic structure can be multiplexed in the implementation, reducing the number of required multipliers and adders. The subfilters are mapped using the folding transformation to obtain an area-efficient time-multiplexed (or pipeline/interleaved) implementation. Both narrow-band and wide-band frequency-response masking as well as arbitrary bandwidth frequency-response masking techniques are considered. The filter design is discussed and for each filter structure the limits on the specifications are derived. Designed examples show the usefulness of the proposed structures.


2018 ◽  
Vol 7 (1.9) ◽  
pp. 69 ◽  
Author(s):  
G Parameshappa ◽  
D Jayadevapp

This paper attempts to present an uniform digital filter bank based on linear phase FIR and IIR filters applied for Frequency Response Masking (FRM) technique in hearing aid applications.In the proposed filter bank, nine uniformly spaced sub-bands are formed with the help of half band filters and masking filters. These nine channel FIR filter bank is realized using an interpolated half band linear phase FIR filter and an appropriate number of masking FIR filters. The nine channel IIR filter bank is realized using an interpolated half band approximately linear phase IIR filter and an appropriate number of masking filters. The proposed approximately linear phase IIR half band filter bank is compared with filter bank based on linear phase FIR half band filters in terms of area, power, memory and number of gates needed for implementation. The experiment was carried on various hearing loss cases and the results obtained from these tests proves that, the proposed filter bank achieved the required matching between audiograms and magnitude response of the filter bank at very reasonable range with less computational complexity.


2003 ◽  
Vol 12 (05) ◽  
pp. 591-599 ◽  
Author(s):  
W. R. LEE ◽  
V. REHBOCK ◽  
K. L. TEO ◽  
L. CACCETTA

This paper presents a new method for designing sharp linear phase FIR filters with power-of-two coefficients. The method is based on a frequency-response masking technique. In this method, the power-of-two coefficients and continuous scaling parameters of the subfilters are taken to be decision variables, and minimizing peak weighted ripple (PWR) is taken to be the design objective. The resulting nonlinear mixed integer optimization problem for each subfilter is first reduced to an equivalent discrete optimization problem whose search region is then cropped for efficiency of computation, similar to the approach in Ref. 1, although a different cropping strategy is used here. The effectiveness of the method is demonstrated through a lowpass linear phase sharp FIR digital filter example.


Circuit World ◽  
2019 ◽  
Vol 45 (3) ◽  
pp. 169-178 ◽  
Author(s):  
Hiren K. Mewada ◽  
Jitendra Chaudhari

Purpose The digital down converter (DDC) is a principal component in modern communication systems. The DDC process traditionally entails quadrature down conversion, bandwidth reducing filters and commensurate sample rate reduction. To avoid group delay, distortion linear phase FIR filters are used in the DDC. The filter performance specifications related to deep stopband attenuation, small in-band ripple and narrow transition bandwidth lead to filters with a large number of coefficients. To reduce the computational workload of the filtering process, filtering is often performed as a two-stage process, the first stage being a down sampling Hoegenauer (or cascade-integrated comb) filter and a reduced sample rate FIR filter. An alternative option is an M-Path polyphase partition of a band cantered FIR filter. Even though IIR filters offer reduced workload to implement a specific filtering task, the authors avoid using them because of their poor group delay characteristics. This paper aims to propose the design of M-path, approximately linear phase IIR filters as an alternative option to the M-path FIR filter. Design/methodology/approach Two filter designs are presented in the paper. The first approach uses linear phase IIR low pass structure to reduce the filter’s coefficient. Whereas the second approach uses multipath polyphase structure to design approximately linear phase IIR filter in DDC. Findings The authors have compared the performance and workload of the proposed polyphase structured IIR filters with state-of-the-art filter design used in DDC. The proposed design is seen to satisfy tight design specification with a significant reduction in arithmetic operations and required power consumption. Originality/value The proposed design is an alternate solution to the M-path polyphase FIR filter offering very less number of coefficients in the filter design. Proposed DDC using polyphase structured IIR filter satisfies the requirement of linear phase with the least number of computation cost in comparison with other DDC structure.


Sign in / Sign up

Export Citation Format

Share Document