A Structured Tabu Search Approach for Scheduling in Parallel Computing Systems

Author(s):  
Tore Ferm ◽  
Albert Y. Zomaya

Task allocation and scheduling are essential for achieving the high performance expected of parallel computing systems. However, there are serious issues pertaining to the efficient utilization of computational resources in such systems that need to be resolved, such as, achieving a balance between system throughput and execution time. Moreover, many scheduling techniques involve massive task graphs with complex precedence relations, processing costs, and inter-task communication costs. In general, there are two main issues that should be highlighted: problem representation and finding an efficient solution in a timely fashion. In the work proposed here, the authors have attempted to overcome the first problem by using a structured model which offers a systematic method for the representation of the scheduling problem. The model used can encode almost all of the parameters involved in a scheduling problem in a very systematic manner. To address the second problem, a Tabu Search algorithm is used to allocate tasks to processors in a reasonable amount of time. The use of Tabu Search has the advantage of obtaining solutions to more general instances of the scheduling problem in reasonable time spans. The efficiency of the proposed framework is demonstrated by using several case studies. A number of evaluation criteria will be used to optimize the schedules. Communication- and computation-intensive task graphs are analyzed, as are a number of different task graph shapes and sizes.

Author(s):  
Tarun Kumar Ghosh ◽  
Sanjoy Das

Grid computing is a high performance distributed computing system that consists of different types of resources such as computing, storage, and communication. The main function of the job scheduling problem is to schedule the resource-intensive user jobs to available grid resources efficiently to achieve high system throughput and to satisfy user requirements. The job scheduling problem has become more challenging with the ever-increasing size of grid systems. The optimal job scheduling is an NP-complete problem which can easily be solved by using meta-heuristic techniques. This chapter presents a hybrid algorithm for job scheduling using genetic algorithm (GA) and cuckoo search algorithm (CSA) for efficiently allocating jobs to resources in a grid system so that makespan, flowtime, and job failure rate are minimized. This proposed algorithm combines the advantages of both GA and CSA. The results have been compared with standard GA, CSA, and ant colony optimization (ACO) to show the importance of the proposed algorithm.


Author(s):  
Tarun Kumar Ghosh ◽  
Sanjoy Das

Grid computing is a high performance distributed computing system that consists of different types of resources such as computing, storage, and communication. The main function of the job scheduling problem is to schedule the resource-intensive user jobs to available grid resources efficiently to achieve high system throughput and to satisfy user requirements. The job scheduling problem has become more challenging with the ever-increasing size of grid systems. The optimal job scheduling is an NP-complete problem which can easily be solved by using meta-heuristic techniques. This chapter presents a hybrid algorithm for job scheduling using genetic algorithm (GA) and cuckoo search algorithm (CSA) for efficiently allocating jobs to resources in a grid system so that makespan, flowtime, and job failure rate are minimized. This proposed algorithm combines the advantages of both GA and CSA. The results have been compared with standard GA, CSA, and ant colony optimization (ACO) to show the importance of the proposed algorithm.


2009 ◽  
Vol 26 (06) ◽  
pp. 817-829 ◽  
Author(s):  
XIAOFENG HU ◽  
JINGSONG BAO ◽  
YE JIN

This paper focuses on scheduling problem of a pipe-processing flowshop in a shipyard. The flowshop composes of five stages, including cutting, bending, welding preprocessing, argon-welding and CO 2-welding, and each stage consists of identical parallel machines. Since thousands of pipes are mounted on the hull block before erection, the pipe-processing scheduling is a critical task for shipbuilding to meet the due date of the block erection. A tabu search algorithm is developed for the scheduling problem with the objective of minimizing total tardiness. Computational experiments are performed on the collected real data. Results show that the proposed algorithm is efficient for this problem.


Sign in / Sign up

Export Citation Format

Share Document