Computational Intelligence

Author(s):  
Zude Zhou ◽  
Huaiqing Wang ◽  
Ping Lou

In the 1990s, a new paradigm of science characterized by uncertainty, nonlinearity, and irreversibility and tackling complex problems was generally recognized by the academic community. In this new paradigm, traditional analytical methods are ineffectual, and there is recognition of the need to explore new methods to solve the more flexible, more robust system problems. In 1994 the first Computational Intelligence Conference in Orlando, Florida, US, first combined three different areas, smart neural networks, fuzzy systems and genetic algorithms, not only because the three have many similarities, but also because a properly combined system of the three is more effective than a system generated by one single technical field. Various theories and approaches of computational intelligence including neural computing, fuzzy computing and evolutional computing are comprehensively introduced in this chapter.

Author(s):  
Milos Manic ◽  
Piyush Sabharwall

Computational intelligence techniques (CITs) traditionally consist of artificial neural networks (ANNs), fuzzy systems and genetic algorithms. This article overviews diverse implementations of ANNs, which are the most prominent in nuclear engineering problems, especially for small modular reactors (SMRs). Advanced computational intelligence-based tools will allow data to be transformation into knowledge, thus improving understanding, predictability (can be seen from the two case studies for thermal-hydraulic prediction), sustainability, and performance of SMRs with real time analysis and monitoring.


2002 ◽  
Vol 7 (1) ◽  
pp. 83-92
Author(s):  
A. V. Kolesnikov ◽  
O. P. Fedorov

The original methodology of the system analysis of the inhomogeneous problem is offered, including stages of its reducing to homogeneous parts and selecting for them appropriate toolkits: methods and models. This system applies the accumulated knowledge and the experts skills to refer of each homogeneous problem to one or several alternative classes of modelling methods: analytical methods, statistical methods, artificial neuronets, knowledge based systems, fuzzy systems, genetic algorithms. The knowledge base testing has shown sufficiency and consistency of knowledge for realization of the inhomogeneous problems analysis even in conditions with a low and average distortion in the problem descriptions.


Author(s):  
Larbi Esmahi ◽  
Kristian Williamson ◽  
Elarbi Badidi

Fuzzy logic became the core of a different approach to computing. Whereas traditional approaches to computing were precise, or hard edged, fuzzy logic allowed for the possibility of a less precise or softer approach (Klir et al., 1995, pp. 212-242). An approach where precision is not paramount is not only closer to the way humans thought, but may be in fact easier to create as well (Jin, 2000). Thus was born the field of soft computing (Zadeh, 1994). Other techniques were added to this field, such as Artificial Neural Networks (ANN), and genetic algorithms, both modeled on biological systems. Soon it was realized that these tools could be combined, and by mixing them together, they could cover their respective weaknesses while at the same time generate something that is greater than its parts, or in short, creating synergy. Adaptive Neuro-fuzzy is perhaps the most prominent of these admixtures of soft computing technologies (Mitra et al., 2000). The technique was first created when artificial neural networks were modified to work with fuzzy logic, hence the Neuro-fuzzy name (Jang et al., 1997, pp. 1-7). This combination provides fuzzy systems with adaptability and the ability to learn. It was later shown that adaptive fuzzy systems could be created with other soft computing techniques, such as genetic algorithms (Yen et al., 1998, pp. 469-490), Rough sets (Pal et al., 2003; Jensen et al., 2004, Ang et al., 2005) and Bayesian networks (Muller et al., 1995), but the Neuro-fuzzy name was widely used, so it stayed. In this chapter we are using the most widely used terminology in the field. Neuro-fuzzy is a blanket description of a wide variety of tools and techniques used to combine any aspect of fuzzy logic with any aspect of artificial neural networks. For the most part, these combinations are just extensions of one technology or the other. For example, neural networks usually take binary inputs, but use weights that vary in value from 0 to 1. Adding fuzzy sets to ANN to convert a range of input values into values that can be used as weights is considered a Neuro-fuzzy solution. This chapter will pay particular interest to the sub-field where the fuzzy logic rules are modified by the adaptive aspect of the system. The next part of this chapter will be organized as follows: in section 1 we examine models and techniques used to combine fuzzy logic and neural networks together to create Neuro-fuzzy systems. Section 2 provides an overview of the main steps involved in the development of adaptive Neuro-fuzzy systems. Section 3 concludes this chapter with some recommendations and future developments.


2014 ◽  
Vol 24 (1) ◽  
pp. 165-181 ◽  
Author(s):  
Pawel Plawiak ◽  
Ryszard Tadeusiewicz

Abstract This paper presents two innovative evolutionary-neural systems based on feed-forward and recurrent neural networks used for quantitative analysis. These systems have been applied for approximation of phenol concentration. Their performance was compared against the conventional methods of artificial intelligence (artificial neural networks, fuzzy logic and genetic algorithms). The proposed systems are a combination of data preprocessing methods, genetic algorithms and the Levenberg-Marquardt (LM) algorithm used for learning feed forward and recurrent neural networks. The initial weights and biases of neural networks chosen by the use of a genetic algorithm are then tuned with an LM algorithm. The evaluation is made on the basis of accuracy and complexity criteria. The main advantage of proposed systems is the elimination of random selection of the network weights and biases, resulting in increased efficiency of the systems.


Author(s):  
Kazuo Tanaka ◽  

We are witnessing a rapidly growing interest in the field of advanced computational intelligence, a "soft computing" technique. As Prof. Zadeh has stated, soft computing integrates fuzzy logic, neural networks, evolutionary computation, and chaos. Soft computing is the most important technology available for designing intelligent systems and control. The difficulties of fuzzy logic involve acquiring knowledge from experts and finding knowledge for unknown tasks. This is related to design problems in constructing fuzzy rules. Neural networks and genetic algorithms are attracting attention for their potential in raising the efficiency of knowledge finding and acquisition. Combining the technologies of fuzzy logic and neural networks and genetic algorithms, i.e., soft computing techniques will have a tremendous impact on the fields of intelligent systems and control design. To explain the apparent success of soft computing, we must determine the basic capabilities of different soft computing frameworks. Give the great amount of research being done in these fields, this issue addresses fundamental capabilities. This special issue is devoted to advancing computational intelligence in control theory and applications. It contains nine excellent papers dealing with advanced computational intelligence in control theory and applications such as fuzzy control and stability, mobile robot control, neural networks, gymnastic bar action, petroleum plant control, genetic programming, Petri net, and modeling and prediction of complex systems. As editor of this special issue, I believe that the excellent research results it contains provide the basis for leadership in coming research on advanced computational intelligence in control theory and applications.


Author(s):  
Shivlal Mewada ◽  
Pradeep Sharma ◽  
S. S. Gautam

Fuzzy system was altered from a ‘buzz word' to an important technological area, with various publications in international conferences and transactions. Several Japanese products applying fuzzy logic concepts, such as household appliances and electronic equipment, power engineering, robotics, and optimization have been manufactured. This system is capable to process and learn mathematical data as well as linguistic data. Fuzzy system user linguistic explanations for the variables and linguistic procedures for the I/P-O/P behavior. In this chapter, present the application of fuzzy system with data mining, neural networks, fuzzy automata, and genetic algorithms. It also presents the foundation of fuzzy data Mining, with the fuzzification inference procedure and defuzzification procedure, fuzzy systems and neural networks with feed forward neural network, FNN with it features generalization of Fuzzy Automata, and sixth fuzzy systems and genetic algorithms. The chapter explores a popular fuzzy system model to show complex systems and an application of fuzzy system.


Sign in / Sign up

Export Citation Format

Share Document