scholarly journals Quantifying Disorder in Networks

Author(s):  
Filippo Passerini ◽  
Simone Severini

The authors introduce a novel entropic notion with the purpose of quantifying disorder/uncertainty in networks. This is based on the Laplacian and it is exactly the von Neumann entropy of certain quantum mechanical states. It is remarkable that the von Neumann entropy depends on spectral properties and it can be computed efficiently. The analytical results described here and the numerical computations lead us to conclude that the von Neumann entropy increases under edge addition, increases with the regularity properties of the network and with the number of its connected components. The notion opens the perspective of a wide interface between quantum information theory and the study of complex networks at the statistical level.

2009 ◽  
Vol 1 (4) ◽  
pp. 58-67 ◽  
Author(s):  
Filippo Passerini ◽  
Simone Severini

The authors introduce a novel entropic notion with the purpose of quantifying disorder/uncertainty in networks. This is based on the Laplacian and it is exactly the von Neumann entropy of certain quantum mechanical states. It is remarkable that the von Neumann entropy depends on spectral properties and it can be computed efficiently. The analytical results described here and the numerical computations lead us to conclude that the von Neumann entropy increases under edge addition, increases with the regularity properties of the network and with the number of its connected components. The notion opens the perspective of a wide interface between quantum information theory and the study of complex networks at the statistical level.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 355
Author(s):  
Andrei Khrennikov ◽  
Noboru Watanabe

This paper is our attempt, on the basis of physical theory, to bring more clarification on the question “What is life?” formulated in the well-known book of Schrödinger in 1944. According to Schrödinger, the main distinguishing feature of a biosystem’s functioning is the ability to preserve its order structure or, in mathematical terms, to prevent increasing of entropy. However, Schrödinger’s analysis shows that the classical theory is not able to adequately describe the order-stability in a biosystem. Schrödinger also appealed to the ambiguous notion of negative entropy. We apply quantum theory. As is well-known, behaviour of the quantum von Neumann entropy crucially differs from behaviour of classical entropy. We consider a complex biosystem S composed of many subsystems, say proteins, cells, or neural networks in the brain, that is, S=(Si). We study the following problem: whether the compound system S can maintain “global order” in the situation of an increase of local disorder and if S can preserve the low entropy while other Si increase their entropies (may be essentially). We show that the entropy of a system as a whole can be constant, while the entropies of its parts rising. For classical systems, this is impossible, because the entropy of S cannot be less than the entropy of its subsystem Si. And if a subsystems’s entropy increases, then a system’s entropy should also increase, by at least the same amount. However, within the quantum information theory, the answer is positive. The significant role is played by the entanglement of a subsystems’ states. In the absence of entanglement, the increasing of local disorder implies an increasing disorder in the compound system S (as in the classical regime). In this note, we proceed within a quantum-like approach to mathematical modeling of information processing by biosystems—respecting the quantum laws need not be based on genuine quantum physical processes in biosystems. Recently, such modeling found numerous applications in molecular biology, genetics, evolution theory, cognition, psychology and decision making. The quantum-like model of order stability can be applied not only in biology, but also in social science and artificial intelligence.


2018 ◽  
Vol 16 (02) ◽  
pp. 1850018
Author(s):  
Indranil Chakrabarty ◽  
Abhishek Deshpande ◽  
Sourav Chatterjee

In this work we introduce the randomness which is truly quantum mechanical in nature arising as an act of measurement. For a composite classical system, we have the joint entropy to quantify the randomness present in the total system and that happens to be equal to the sum of the entropy of one subsystem and the conditional entropy of the other subsystem, given we know the first system. The same analogy carries over to the quantum setting by replacing the Shannon entropy by the von Neumann entropy. However, if we replace the conditional von Neumann entropy by the average conditional entropy due to measurement, we find that it is different from the joint entropy of the system. We call this difference Measurement Induced Randomness (MIR) and argue that this is unique of quantum mechanical systems and there is no classical counterpart to this. In other words, the joint von Neumann entropy gives only the total randomness that arises because of the heterogeneity of the mixture and we show that it is not the total randomness that can be generated in the composite system. We generalize this quantity for N-qubit systems and show that it reduces to quantum discord for two-qubit systems. Further, we show that it is exactly equal to the change in the cost quantum state merging that arises because of the measurement. We argue that for quantum information processing tasks like state merging, the change in the cost as a result of discarding prior information can also be viewed as a rise of randomness due to measurement.


Author(s):  
Sumiyoshi Abe

Nonadditive classical information theory is developed in the axiomatic framework and then translated into quantum theory. The nonadditive conditional entropy associated with the Tsallis entropy indexed by q is given in accordance with the formalism of nonextensive statistical mechanics. The theory is applied to the problems of quantum entanglement and separability of the Werner-Popescu-type mixed state of a multipartite system, in order to examine if it has any points superior to the additive theory with the von Neumann entropy realized in the limit q → 1. It is shown that the nonadditive theory can lead to the necessary and sufficient condition for separability of the Werner-Popescu-type state, whereas the von Neumann theory can give only a much weaker condition…. Tsallis' nonextensive generalization of Boltzmann-Gibbs statistical mechanics [3, 15, 16] and its success in describing behaviors of a large class of complex systems naturally lead to the question of whether information theory can also admit an analogous generalization. If the answer is affirmative, then that will be of particular importance in connection with the problem of quantum entanglement and quantum theory of measurement [6, 8], in which necessities of a nonadditive information measure and an information content are suggested. One should also remember that there exists a conceptual similarity between a complex system and an entangled quantum system. In these systems, a "part" is indivisibly connected with the rest. An external operation on any part drastically influences the whole system, in general. Thus, the traditional reductionistic approach to an understanding of the nature of such a system may not work efficiently. In this chapter, we report a recent development in nonadditive quantum information theory based on the Tsallis entropy indexed by q [15] and its associated nonadditive conditional entropy [1]. This theory includes the ordinary additive theory with the von Neumann entropy in a special limiting case: q → To see if it has points superior to the additive theory, we apply it to the problems of separability and quantum entanglement.


2011 ◽  
Vol 11 (9&10) ◽  
pp. 855-866
Author(s):  
Yusuke Ide ◽  
Norio Konno ◽  
Takuya Machida

The discrete-time quantum walk is a quantum counterpart of the random walk. It is expected that the model plays important roles in the quantum field. In the quantum information theory, entanglement is a key resource. We use the von Neumann entropy to measure the entanglement between the coin and the particle's position of the quantum walks. Also we deal with the Shannon entropy which is an important quantity in the information theory. In this paper, we show limits of the von Neumann entropy and the Shannon entropy of the quantum walks on the one dimensional lattice starting from the origin defined by arbitrary coin and initial state. In order to derive these limits, we use the path counting method which is a combinatorial method for computing probability amplitude.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Andrei Khrennikov

Nowadays it is practically forgotten that for observables with degenerate spectra the original von Neumann projection postulate differs crucially from the version of the projection postulate which was later formalized by Lüders. The latter (and not that due to von Neumann) plays the crucial role in the basic constructions of quantum information theory. We start this paper with the presentation of the notions related to the projection postulate. Then we remind that the argument of Einstein-Podolsky-Rosen against completeness of QM was based on the version of the projection postulate which is nowadays called Lüders postulate. Then we recall that all basic measurements on composite systems are represented by observables with degenerate spectra. This implies that the difference in the formulation of the projection postulate (due to von Neumann and Lüders) should be taken into account seriously in the analysis of the basic constructions of quantum information theory. This paper is a review devoted to such an analysis.


Author(s):  
Sergiu I. Vacaru

Abstract This work consists an introduction to the classical and quantum information theory of geometric flows of (relativistic) Lagrange–Hamilton mechanical systems. Basic geometric and physical properties of the canonical nonholonomic deformations of G. Perelman entropy functionals and geometric flows evolution equations of classical mechanical systems are described. There are studied projections of such F- and W-functionals on Lorentz spacetime manifolds and three-dimensional spacelike hypersurfaces. These functionals are used for elaborating relativistic thermodynamic models for Lagrange–Hamilton geometric evolution and respective generalized Hamilton geometric flow and nonholonomic Ricci flow equations. The concept of nonholonomic W-entropy is developed as a complementary one for the classical Shannon entropy and the quantum von Neumann entropy. There are considered geometric flow generalizations of the approaches based on classical and quantum relative entropy, conditional entropy, mutual information, and related thermodynamic models. Such basic ingredients and topics of quantum geometric flow information theory are elaborated using the formalism of density matrices and measurements with quantum channels for the evolution of quantum mechanical systems.


Open Physics ◽  
2013 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexey Rastegin

AbstractOne of most important issues in quantum information theory concerns transmission of information through noisy quantum channels. We discuss a few channel characteristics expressed by means of generalized entropies. Such characteristics can often be treated in line with more usual treatment based on the von Neumann entropies. For any channel, we show that the q-average output entropy of degree q ≥ 1 is bounded from above by the q-entropy of the input density matrix. The concavity properties of the (q, s)-entropy exchange are considered. Fano type quantum bounds on the (q, s)-entropy exchange are derived. We also give upper bounds on the map (q, s)-entropies in terms of the output entropy, corresponding to the completely mixed input.


10.29007/7h1q ◽  
2018 ◽  
Author(s):  
Laszlo Gyongyosi ◽  
Sandor Imre

In the first decade of the 21st century, many revolutionary properties of quantum channels were discovered. These phenomena are purely quantum mechanical and completely unimaginable in classical systems. Recently, the most important discovery in Quantum Information Theory was the possibility of transmitting quantum information over zero-capacity quantum channels. In this work we prove that the possibility of superactivation of quantum channel capacities is determined by the mathematical properties of the quantum relative entropy function.


Author(s):  
Volkan Erol

Quantum information theory and quantum computing are theoritical basis of quantum computers. Thanks to entanglement, quantum mechanical systems are provisioned to realize many information processing problems faster than classical counterparts. For example, Shor’s factorization algorithm, Grover’s search algorithm, quantum Fourrier transformation, etc. Entanglement, is the theoretical basis providing the expected speedups. It can be view in bipartite or multipartite forms. In order to quantify entanglement, some measures are defined. On the other hand, a general and accepted criterion, which can measure the amount of entanglement of multilateral systems, has not yet been found. In this work, we make a short review of recent research on the topic entanglement monotones and measures with an analitical approach.


Sign in / Sign up

Export Citation Format

Share Document