A Quantum Particle Swarm Optimization Algorithm Based on Self-Updating Mechanism

Author(s):  
Shuyue Wu

The living mechanism has limited life in nature; it will age and die with time. This article describes that during the progressive process, the aging mechanism is very important to keep a swarm diverse. In the quantum behavior particle swarm (QPSO) algorithm, the particles are aged and the algorithm is prematurely convergent, the self-renewal mechanism of life is introduced into QPSO algorithm, and a leading particle and challengers are introduced. When the population particles are aged and the leading power of leading particle is exhausted, a challenger particle becomes the new leader particle through the competition update mechanism, group evolution is completed and the group diversity is maintained, and the global convergence of the algorithm is proven. Next in the article, twelve Clement2009 benchmark functions are used in the experimental test, both the comparison and analysis of results of the proposed method and classical improved QPSO algorithms are given, and the simulation results show strong global finding ability of the proposed algorithm. Especially in the seven multi-model test functions, the comprehensive performance is optimal.

2018 ◽  
Vol 9 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Shuyue Wu

The living mechanism has limited life in nature; it will age and die with time. This article describes that during the progressive process, the aging mechanism is very important to keep a swarm diverse. In the quantum behavior particle swarm (QPSO) algorithm, the particles are aged and the algorithm is prematurely convergent, the self-renewal mechanism of life is introduced into QPSO algorithm, and a leading particle and challengers are introduced. When the population particles are aged and the leading power of leading particle is exhausted, a challenger particle becomes the new leader particle through the competition update mechanism, group evolution is completed and the group diversity is maintained, and the global convergence of the algorithm is proven. Next in the article, twelve Clement2009 benchmark functions are used in the experimental test, both the comparison and analysis of results of the proposed method and classical improved QPSO algorithms are given, and the simulation results show strong global finding ability of the proposed algorithm. Especially in the seven multi-model test functions, the comprehensive performance is optimal.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1403 ◽  
Author(s):  
Cheng-Long Wei ◽  
Gai-Ge Wang

The particle swarm optimization algorithm (PSO) is not good at dealing with discrete optimization problems, and for the krill herd algorithm (KH), the ability of local search is relatively poor. In this paper, we optimized PSO by quantum behavior and optimized KH by simulated annealing, so a new hybrid algorithm, named the annealing krill quantum particle swarm optimization (AKQPSO) algorithm, is proposed, and is based on the annealing krill herd algorithm (AKH) and quantum particle swarm optimization algorithm (QPSO). QPSO has better performance in exploitation and AKH has better performance in exploration, so AKQPSO proposed on this basis increases the diversity of population individuals, and shows better performance in both exploitation and exploration. In addition, the quantum behavior increased the diversity of the population, and the simulated annealing strategy made the algorithm avoid falling into the local optimal value, which made the algorithm obtain better performance. The test set used in this paper is a classic 100-Digit Challenge problem, which was proposed at 2019 IEEE Congress on Evolutionary Computation (CEC 2019), and AKQPSO has achieved better performance on benchmark problems.


2017 ◽  
Vol 10 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Lu Li ◽  
Shuyue Wu

Quantum-behaved Particle Swarm Optimization algorithm is analyzed, contraction-expansion coefficient and its control method are studied. To the different performance characteristics with different coefficients control strategies, a control method of coefficient with Q-learning is proposed. The proposed method can tune the coefficient adaptively, and the whole optimization performance is increased. The comparison and analysis of results with the proposed method, constant coefficient control method, linear decreased coefficient control method and non-linear decreased coefficient control method is given based on CEC 2005 benchmark function.


Author(s):  
Jiatang Cheng ◽  
Yan Xiong

Background: The effective diagnosis of wind turbine gearbox fault is an important means to ensure the normal and stable operation and avoid unexpected accidents. Methods: To accurately identify the fault modes of the wind turbine gearbox, an intelligent diagnosis technology based on BP neural network trained by the Improved Quantum Particle Swarm Optimization Algorithm (IQPSOBP) is proposed. In IQPSO approach, the random adjustment scheme of contractionexpansion coefficient and the restarting strategy are employed, and the performance evaluation is executed on a set of benchmark test functions. Subsequently, the fault diagnosis model of the wind turbine gearbox is built by using IQPSO algorithm and BP neural network. Results: According to the evaluation results, IQPSO is superior to PSO and QPSO algorithms. Also, compared with BP network, BP network trained by Particle Swarm Optimization (PSOBP) and BP network trained by Quantum Particle Swarm Optimization (QPSOBP), IQPSOBP has the highest diagnostic accuracy. Conclusion: The presented method provides a new reference for the fault diagnosis of wind turbine gearbox.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4613
Author(s):  
Shah Fahad ◽  
Shiyou Yang ◽  
Rehan Ali Khan ◽  
Shafiullah Khan ◽  
Shoaib Ahmed Khan

Electromagnetic design problems are generally formulated as nonlinear programming problems with multimodal objective functions and continuous variables. These can be solved by either a deterministic or a stochastic optimization algorithm. Recently, many intelligent optimization algorithms, such as particle swarm optimization (PSO), genetic algorithm (GA) and artificial bee colony (ABC), have been proposed and applied to electromagnetic design problems with promising results. However, there is no universal algorithm which can be used to solve engineering design problems. In this paper, a stochastic smart quantum particle swarm optimization (SQPSO) algorithm is introduced. In the proposed SQPSO, to tackle the premature convergence problem in order to improve the global search ability, a smart particle and a memory archive are adopted instead of mutation operations. Moreover, to enhance the exploration searching ability, a new set of random numbers and control parameters are introduced. Experimental results validate that the adopted control policy in this work can achieve a good balance between exploration and exploitation. Finally, the SQPSO has been tested on well-known optimization benchmark functions and implemented on the electromagnetic TEAM workshop problem 22. The simulation result shows an outstanding capability of the proposed algorithm in speeding convergence compared to other algorithms.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Sheetal N. Ghorpade ◽  
Marco Zennaro ◽  
Bharat S. Chaudhari ◽  
Rashid A. Saeed ◽  
Hesham Alhumyani ◽  
...  

2018 ◽  
Vol 10 (10) ◽  
pp. 3791 ◽  
Author(s):  
Daqing Wu ◽  
Jiazhen Huo ◽  
Gefu Zhang ◽  
Weihua Zhang

This paper aims to simultaneously minimize logistics costs and carbon emissions. For this purpose, a mathematical model for a three-echelon supply chain network is created considering the relevant constraints such as capacity, production cost, transport cost, carbon emissions, and time window, which will be solved by the proposed quantum-particle swarm optimization algorithm. The three-echelon supply chain, consisting of suppliers, distribution centers, and retailers, is established based on the number and location of suppliers, the transport method from suppliers to distribution centers, and the quantity of products to be transported from suppliers to distribution centers and from these centers to retailers. Then, a quantum-particle swarm optimization is described as its performance is validated with different benchmark functions. The scenario analysis validates the model and evaluates its performance to balance the economic benefit and environmental effect.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Zhehuang Huang

Quantum particle swarm optimization (QPSO) is a population based optimization algorithm inspired by social behavior of bird flocking which combines the ideas of quantum computing. For many optimization problems, traditional QPSO algorithm can produce high-quality solution within a reasonable computation time and relatively stable convergence characteristics. But QPSO algorithm also showed some unsatisfactory issues in practical applications, such as premature convergence and poor ability in global optimization. To solve these problems, an improved quantum particle swarm optimization algorithm is proposed and implemented in this paper. There are three main works in this paper. Firstly, an improved QPSO algorithm is introduced which can enhance decision making ability of the model. Secondly, we introduce synergetic neural network model to mangroves classification for the first time which can better handle fuzzy matching of remote sensing image. Finally, the improved QPSO algorithm is used to realize the optimization of network parameter. The experiments on mangroves classification showed that the improved algorithm has more powerful global exploration ability and faster convergence speed.


Sign in / Sign up

Export Citation Format

Share Document