Sift and Deep Convolutional Features for Closeness-Based Leaf Image Recognition

Author(s):  
Sucithra B. ◽  
Angelin Gladston

Plant leaf recognition has been carried out widely using low level features. Scale invariant feature transform techniques have been used to extract the low level features. Leaves that match based on low level features but do not do so in the semantic perspective cannot not be recognized. To address that, global features have been extracted and used using convolutional neural networks. Even then there are issues like leaf images in various illuminations, rotations, taken in different angles, and so on. To address such issues, the closeness among low level features and global features are computed using multiple distance measures and a leaf recognition framework has been proposed. The matched patches are evaluated both quantitatively and qualitatively. Experimental results obtained are promising for the proposed closeness-based leaf recognition framework.

2013 ◽  
Vol 347-350 ◽  
pp. 3469-3472 ◽  
Author(s):  
Wei Wu ◽  
Sen Lin ◽  
Hui Song

Compared with the traditional method of contact collection, contactless acquisition is the mainstream and trend of palm vein recognition. However, this method may lead to image deformation caused by no parallel of the palm plane and the sensor plane. In order to improve the limited effect of Scale Invariant Feature Transform (SIFT) about this problem, a better method of palm vein recognition which based on principle line SIFT is proposed. Based on the self-built database, this method is compared with the SIFT and other typical palm vein recognition methods, the experimental results show that our system can achieve the best performance.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 353
Author(s):  
A Roshna Meeran ◽  
V Nithya

The paper focuses on the investigation of image processing of Electronic waste detection and identification in recycling process of all Electronic items. Some of actually collected images of E-wastes would be combined with other wastes. For object matching with scale in-variance the SIFT (Scale -Invariant- Feature Transform) is applied. This method detects the electronic waste found among other wastes and also estimates the amount of electronic waste detected the give set of wastes. The detection of electronics waste by this method is most efficient ways to detect automatically without any manual means.


2019 ◽  
Vol 8 (2) ◽  
pp. 6053-6057

Telugu language is one of the most spoken Indian languages throughout the world. Since it has an old heritage, so Telugu literature and newspaper publications can be scanned to identify individual words. Identification of Telugu word images poses serious problems owing to its complex structure and larger set of individual characters. This paper aims to develop a novel methodology to achieve the same using SIFT (Scale Invariant Feature Transform) features of telugu words and classifying these features using BoVW (bag of visual words). The features are clustered to create a dictionary using k-means clustering. These words are used to create a visual codebook of the word images and the classification is achieved through SVM (Support Vector Machine).


Sign in / Sign up

Export Citation Format

Share Document