Techno-Economic Evaluation of Hydrogen Fuel Cell Electricity Generation Based on Anloga (Ghana) Wind Regime

2021 ◽  
Vol 10 (3) ◽  
pp. 47-69
Author(s):  
Amevi Acakpovi ◽  
Patrick Adjei ◽  
Nana Yaw Asabere ◽  
Robert Adjetey Sowah ◽  
David Mensah Sackey

This paper assesses the performance of electricity generation using wind/hydrogen/fuel-cell technology. The intermittency of renewables, especially wind, and the need for storage of excess energy make them unattractive for continuous generation of electricity. This paper focuses on the wind resource of Anloga (Ghana) and the potential of hydrogen production from water electrolysis. The assessment of this system covers three main areas including the potential energy generation, environmental impacts, and economic impacts. The paper adopted analytical models of energy generation of fuel cell and hydrogen technologies and further performs their assessment using HOMER software. It was revealed that the annual electricity production from the hydrogen fuel cell is 25,999kW/yr, with an annual capacity shortage of 392kW/yr representing a 10% capacity shortage. The levelized cost of electricity was 0.602$/kWh and the emissions have been completely minimized as compared to diesel generation plants.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Amevi Acakpovi ◽  
Patrick Adjei ◽  
Nnamdi Nwulu ◽  
Nana Yaw Asabere

This paper performs a technoeconomic comparison of two hybrid renewable energy supplies (HRES) for a specific location in Ghana and suggests the optimal solution in terms of cost, energy generation capacity, and emissions. The two HRES considered in this paper were wind/hydrogen/fuel-cell and wind/battery storage, respectively. The necessity of this study was derived from the rise and expansion of hybrid renewable energy supply in a decentralised network. The readiness to embrace these new technologies is apparently high, but the best combination for a selected location that brings optimum benefits is not obvious and demands serious technical knowledge of their technical and economic models. In the methodology, an analytical model of energy generation by the various RE sources was first established, and data were collected about a rural-urban community in Doderkope, Ghana, to test the models. HOMER software was used to design the two hybrid systems based on the same load profiles, and results were compared. It turns out that the HRES 1 (wind/hydrogen/fuel-cell) had the lowest net present cost (NPC) and levelized cost of electricity (COE) over the project life span of 25 years. The energy reserve with the HRES 2 (wind/battery storage) was huge compared to that with the HRES 1, about 270% bigger. Furthermore, with respect to the emissions, the HRES 2 was environmentally friendlier than the HRES 1. Even though the battery storage seems to be more cost-effective than the hydrogen fuel-cell technology, the latter presents some merits regarding system capacity and emission that deserve greater attention as the world looks into more sustainable energy storage systems.


2017 ◽  
Vol 7 (2) ◽  
pp. 1455-1459 ◽  
Author(s):  
S. Javadpoor ◽  
D. Nazarpour

Electrical grid expansion onto remote areas is often not cost-effective and/or technologically feasible. Thus, isolated electrical systems are preferred in such cases. This paper focuses on a hybrid photovoltaic (PV)-hydrogen/fuel cell (FC) system which basic components include a PV, a FC, alkaline water electrolysis and a hydrogen gas tank. To increase the response rate, supercapacitors or small batteries are usually employed in such systems. This study focuses on the dynamics of the system. In the suggested structure, the PV is used as the main source of power. The FC is connected to the load in parallel with the PV by a transducer in order to inject the differential power while reducing power generation in relation to power consumption. An electrolyzer is used to convert the surplus power to hydrogen. This study studies a conventional hybrid photovoltaic-hydrogen/fuel cell system to evaluate different loading behaviors. Software modeling is done for the suggested hybrid system using MATLAB/SIMULINK.


2021 ◽  
Vol 489 ◽  
pp. 229450
Author(s):  
Sahar Foorginezhad ◽  
Masoud Mohseni-Dargah ◽  
Zahra Falahati ◽  
Rouzbeh Abbassi ◽  
Amir Razmjou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document