Indoor Air Quality Monitoring Systems

2021 ◽  
Vol 11 (3) ◽  
pp. 1-14
Author(s):  
Rasha AbdulWahhab ◽  
Karan Jetly Jetly ◽  
Shqran Shakir

Research activity in the field of monitoring indoor quality systems has increased dramatically in recent years. Monitoring closed areas can reduce health-related risks due to poor or contaminated air quality. In the current COVID pandemic, the population has observed that improving ventilation in the closed area can significantly reduce infection risk. However, the significance of air quality statistics makes highly accurate real-time monitoring systems vital. In this paper, several researchers' protocols and the methodologies for monitoring a good high indoor air quality system are presented. The majority of the reviewed works are aimed to reduce air pollution levels of the atmosphere. The vast majority of the identified works utilized IoT and WSN technology to fix the partial access to sensed data, high cost, and non-scalability of conventional air monitoring systems. Furthermore, ad-hoc approaches are predominantly used to help society change its attitude and impose corrective actions to improve air quality. This paper presents a short but comprehensive review of several researchers works with different approaches to ecological trend analysis capabilities, drawing on existing literature works. Overall, the findings highlight the need for developing systematic protocols for these systems and establishing smart air quality monitoring systems capable of measuring pollutant concentrations in the air.

2017 ◽  
Vol 7 (8) ◽  
pp. 823 ◽  
Author(s):  
Shaharil Mad Saad ◽  
Allan Andrew ◽  
Ali Md Shakaff ◽  
Mohd Mat Dzahir ◽  
Mohamed Hussein ◽  
...  

Author(s):  
Jagriti Saini ◽  
Maitreyee Dutta ◽  
Gonçalo Marques

Indoor air quality has been a matter of concern for the international scientific community. Public health experts, environmental governances, and industry experts are working to improve the overall health, comfort, and well-being of building occupants. Repeated exposure to pollutants in indoor environments is reported as one of the potential causes of several chronic health problems such as lung cancer, cardiovascular disease, and respiratory infections. Moreover, smart cities projects are promoting the use of real-time monitoring systems to detect unfavorable scenarios for enhanced living environments. The main objective of this work is to present a systematic review of the current state of the art on indoor air quality monitoring systems based on the Internet of Things. The document highlights design aspects for monitoring systems, including sensor types, microcontrollers, architecture, and connectivity along with implementation issues of the studies published in the previous five years (2015–2020). The main contribution of this paper is to present the synthesis of existing research, knowledge gaps, associated challenges, and future recommendations. The results show that 70%, 65%, and 27.5% of studies focused on monitoring thermal comfort parameters, CO2, and PM levels, respectively. Additionally, there are 37.5% and 35% of systems based on Arduino and Raspberry Pi controllers. Only 22.5% of studies followed the calibration approach before system implementation, and 72.5% of systems claim energy efficiency.


Author(s):  
Chang-Se Oh ◽  
Min-Seok Seo ◽  
Jung-Hyuck Lee ◽  
Sang-Hyun Kim ◽  
Young-Don Kim ◽  
...  

2021 ◽  
pp. 133-147
Author(s):  
Jagriti Saini ◽  
Maitreyee Dutta ◽  
Gonçalo Marques

2020 ◽  
Vol 12 (10) ◽  
pp. 4024 ◽  
Author(s):  
Gonçalo Marques ◽  
Jagriti Saini ◽  
Maitreyee Dutta ◽  
Pradeep Kumar Singh ◽  
Wei-Chiang Hong

Smart cities follow different strategies to face public health challenges associated with socio-economic objectives. Buildings play a crucial role in smart cities and are closely related to people’s health. Moreover, they are equally essential to meet sustainable objectives. People spend most of their time indoors. Therefore, indoor air quality has a critical impact on health and well-being. With the increasing population of elders, ambient-assisted living systems are required to promote occupational health and well-being. Furthermore, living environments must incorporate monitoring systems to detect unfavorable indoor quality scenarios in useful time. This paper reviews the current state of the art on indoor air quality monitoring systems based on Internet of Things and wireless sensor networks in the last five years (2014–2019). This document focuses on the architecture, microcontrollers, connectivity, and sensors used by these systems. The main contribution is to synthesize the existing body of knowledge and identify common threads and gaps that open up new significant and challenging future research directions. The results show that 57% of the indoor air quality monitoring systems are based on Arduino, 53% of the systems use Internet of Things, and WSN architectures represent 33%. The CO2 and PM monitoring sensors are the most monitored parameters in the analyzed literature, corresponding to 67% and 29%, respectively.


Sign in / Sign up

Export Citation Format

Share Document