Hybrid Tabu Search Hopfield Recurrent ANN Fuzzy Technique to the Production Planning Problems

Author(s):  
Pandian M. Vasant ◽  
Timothy Ganesan ◽  
Irraivan Elamvazuthi

The fuzzy technology reveals that everything is a matter of degree. At the moment, many industrial production problems are solved by operational research optimization techniques, under the considerations of some real assumptions. In this paper, the authors have several applications of fuzzy linear, non-linear, non-continues and other mathematical programming applications. The prime objective of this paper is to investigate a new application to the literature and to solve the crude oil refinery production problem by using the hybrid optimization techniques of Tabu Search (TS), Hopfield Recurrent Artificial Neural Network (HRANN) and fuzzy approaches. In application, the real world problem of refinery model has been developed and thorough comparative studies have been carried on varies optimization techniques. The final results and findings reveal that, the hybrid optimization technique provides better, robust, efficient, flexible and stable solutions.

Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 181 ◽  
Author(s):  
Freddy Lucay ◽  
Edelmira Gálvez ◽  
Luis Cisternas

The design of a flotation circuit based on optimization techniques requires a superstructure for representing a set of alternatives, a mathematical model for modeling the alternatives, and an optimization technique for solving the problem. The optimization techniques are classified into exact and approximate methods. The first has been widely used. However, the probability of finding an optimal solution decreases when the problem size increases. Genetic algorithms have been the approximate method used for designing flotation circuits when the studied problems were small. The Tabu-search algorithm (TSA) is an approximate method used for solving combinatorial optimization problems. This algorithm is an adaptive procedure that has the ability to employ many other methods. The TSA uses short-term memory to prevent the algorithm from being trapped in cycles. The TSA has many practical advantages but has not been used for designing flotation circuits. We propose using the TSA for solving the flotation circuit design problem. The TSA implemented in this work applies diversification and intensification strategies: diversification is used for exploring new regions, and intensification for exploring regions close to a good solution. Four cases were analyzed to demonstrate the applicability of the algorithm: different objective function, different mathematical models, and a benchmarking between TSA and Baron solver. The results indicate that the developed algorithm presents the ability to converge to a solution optimal or near optimal for a complex combination of requirements and constraints, whereas other methods do not. TSA and the Baron solver provide similar designs, but TSA is faster. We conclude that the developed TSA could be useful in the design of full-scale concentration circuits.


Sign in / Sign up

Export Citation Format

Share Document