A Pagerank-Inspired Heuristic Scheme for Influence Maximization in Social Networks

2015 ◽  
Vol 12 (4) ◽  
pp. 48-62 ◽  
Author(s):  
Bo Zhang ◽  
Yufeng Wang ◽  
Qun Jin ◽  
Jianhua Ma

This article focused on seeking a new heuristic algorithm for the influence maximization problem in complex social networks, in which a small subset of individuals are intentionally selected as seeds to trigger a large cascade of further adoptions of a new behavior under certain influence cascade models. In literature, degree and other centrality-based heuristics are commonly used to estimate the influential power of individuals in social networks. The major issues with degree-based heuristics are twofold. First, those results are only derived for the uniform IC model, in which propagation probabilities on all social links are set as same, which is rarely the case in reality; Second, intuitively, an individual's influence power depends not only on the number of direct friends, but also relates to kinds of those friends, that is, the neighbors' influence should also be taken into account when measuring one's influential power. Based on the general weighted cascade model (WC), this article proposes Pagerank-inspired heuristic scheme, PRDiscount, which explicitly discounts the influence power of those individuals who have social relationships with chosen seeds, to alleviate the “overlapping effect” occurred in behavior diffusion. Then, the authors use both the artificially constructed social network graphs (with the features of power-law degree distribution and small-world characteristics) and the real-data traces of social networks to verify the performance of their proposal. Simulations illustrate that PRDiscount can advantage over the existing degree-based discount algorithm, DegreeDiscount, and achieve the comparable performance as greedy algorithm.

Computing ◽  
2021 ◽  
Author(s):  
Zahra Aghaee ◽  
Mohammad Mahdi Ghasemi ◽  
Hamid Ahmadi Beni ◽  
Asgarali Bouyer ◽  
Afsaneh Fatemi

2019 ◽  
Vol 11 (4) ◽  
pp. 95
Author(s):  
Wang ◽  
Zhu ◽  
Liu ◽  
Wang

Social networks have attracted a lot of attention as novel information or advertisement diffusion media for viral marketing. Influence maximization describes the problem of finding a small subset of seed nodes in a social network that could maximize the spread of influence. A lot of algorithms have been proposed to solve this problem. Recently, in order to achieve more realistic viral marketing scenarios, some constrained versions of influence maximization, which consider time constraints, budget constraints and so on, have been proposed. However, none of them considers the memory effect and the social reinforcement effect, which are ubiquitous properties of social networks. In this paper, we define a new constrained version of the influence maximization problem that captures the social reinforcement and memory effects. We first propose a novel propagation model to capture the dynamics of the memory and social reinforcement effects. Then, we modify two baseline algorithms and design a new algorithm to solve the problem under the model. Experiments show that our algorithm achieves the best performance with relatively low time complexity. We also demonstrate that the new version captures some important properties of viral marketing in social networks, such as such as social reinforcements, and could explain some phenomena that cannot be explained by existing influence maximization problem definitions.


2015 ◽  
Vol 07 (03) ◽  
pp. 1550037 ◽  
Author(s):  
Huan Ma ◽  
Yuqing Zhu ◽  
Deying Li ◽  
Donghyun Kim ◽  
Jun Liang

The influence maximization problem in social networks is to find a set of seed nodes such that the total influence effect is maximized under certain cascade models. In this paper, we propose a novel task of improving influence, which is to find strategies to allocate the investment budget under IC-N model. We prove that our influence improving problem is 𝒩𝒫-hard, and propose new algorithms under IC-N model. To the best of our knowledge, our work is the first one that studies influence improving problem under bounded budget when negative opinions emerge. Finally, we implement extensive experiments over a large data collection obtained from real-world social networks, and evaluate the performance of our approach.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-23
Author(s):  
Jianxiong Guo ◽  
Weili Wu

Influence maximization problem attempts to find a small subset of nodes that makes the expected influence spread maximized, which has been researched intensively before. They all assumed that each user in the seed set we select is activated successfully and then spread the influence. However, in the real scenario, not all users in the seed set are willing to be an influencer. Based on that, we consider each user associated with a probability with which we can activate her as a seed, and we can attempt to activate her many times. In this article, we study the adaptive influence maximization with multiple activations (Adaptive-IMMA) problem, where we select a node in each iteration, observe whether she accepts to be a seed, if yes, wait to observe the influence diffusion process; if no, we can attempt to activate her again with a higher cost or select another node as a seed. We model the multiple activations mathematically and define it on the domain of integer lattice. We propose a new concept, adaptive dr-submodularity, and show our Adaptive-IMMA is the problem that maximizing an adaptive monotone and dr-submodular function under the expected knapsack constraint. Adaptive dr-submodular maximization problem is never covered by any existing studies. Thus, we summarize its properties and study its approximability comprehensively, which is a non-trivial generalization of existing analysis about adaptive submodularity. Besides, to overcome the difficulty to estimate the expected influence spread, we combine our adaptive greedy policy with sampling techniques without losing the approximation ratio but reducing the time complexity. Finally, we conduct experiments on several real datasets to evaluate the effectiveness and efficiency of our proposed policies.


2020 ◽  
Author(s):  
Paolo Scarabaggio ◽  
Raffaele Carli ◽  
Mariagrazia Dotoli

The main characteristic of social networks is their ability to quickly spread information between a large group of people. This phenomenon is generated by the social influence that individuals induce on each other.<br>The widespread use of online social networks (e.g., Facebook) increases researchers' interest in how influence propagates through these networks. One of the most important research issues in this field is the so-called influence maximization problem, which essentially consists in selecting the most influential users (i.e., those who are able to maximize the spread of influence through the social network).<br>Due to its practical importance in various applications (e.g., viral marketing, target advertisement, personalized recommendation), such a problem has been studied in several variants. Different solution methodologies have been proposed. Nevertheless, the current open challenge in the resolution of the influence maximization problem still concerns achieving a good trade-off between accuracy and computational time. <br>In this context, based on the well-known independent cascade and the linear threshold models of social networks, we propose a novel low-complexity and highly accurate algorithm for selecting an initial group of nodes to maximize the spread of influence in large-scale networks. In particular, the key idea consists in iteratively removing the overlap of influence spread induced by different seed nodes. Application to several numerical experiments based on real datasets proves that the proposed algorithm effectively finds practical near-optimal solutions of the addressed influence maximization problem in a computationally efficient fashion. Finally, comparison with the best performing state of the art algorithms demonstrates that in large scale scenarios, the proposed approach shows higher performance in terms of influence spread and running time.


Author(s):  
Esmaeil Bagheri ◽  
Gholamhossein Dastghaibyfard ◽  
Ali Hamzeh

Influence maximization algorithms try to select a set of individuals in social networks that are more influential. The Influence maximization problem is important in marketing and many researchers has researched on it and proposed new algorithms. All proposed algorithms are not scalable and are very time consuming for very large social networks generally. In this paper, a fast and scalable influence maximization algorithm called FSIM is proposed based on community detection. FSIM algorithm decreases number of nodes that must be examined without loss of the operations quality therefore it can find seeds quickly. FSIM can maximize influence in large social networks. Experimental results show FSIM is faster and more scalable than existing algorithms.


Sign in / Sign up

Export Citation Format

Share Document