Improving the influence under IC-N model in social networks

2015 ◽  
Vol 07 (03) ◽  
pp. 1550037 ◽  
Author(s):  
Huan Ma ◽  
Yuqing Zhu ◽  
Deying Li ◽  
Donghyun Kim ◽  
Jun Liang

The influence maximization problem in social networks is to find a set of seed nodes such that the total influence effect is maximized under certain cascade models. In this paper, we propose a novel task of improving influence, which is to find strategies to allocate the investment budget under IC-N model. We prove that our influence improving problem is 𝒩𝒫-hard, and propose new algorithms under IC-N model. To the best of our knowledge, our work is the first one that studies influence improving problem under bounded budget when negative opinions emerge. Finally, we implement extensive experiments over a large data collection obtained from real-world social networks, and evaluate the performance of our approach.

Author(s):  
Esmaeil Bagheri ◽  
Gholamhossein Dastghaibyfard ◽  
Ali Hamzeh

Influence maximization algorithms try to select a set of individuals in social networks that are more influential. The Influence maximization problem is important in marketing and many researchers has researched on it and proposed new algorithms. All proposed algorithms are not scalable and are very time consuming for very large social networks generally. In this paper, a fast and scalable influence maximization algorithm called FSIM is proposed based on community detection. FSIM algorithm decreases number of nodes that must be examined without loss of the operations quality therefore it can find seeds quickly. FSIM can maximize influence in large social networks. Experimental results show FSIM is faster and more scalable than existing algorithms.


2015 ◽  
Vol 12 (4) ◽  
pp. 48-62 ◽  
Author(s):  
Bo Zhang ◽  
Yufeng Wang ◽  
Qun Jin ◽  
Jianhua Ma

This article focused on seeking a new heuristic algorithm for the influence maximization problem in complex social networks, in which a small subset of individuals are intentionally selected as seeds to trigger a large cascade of further adoptions of a new behavior under certain influence cascade models. In literature, degree and other centrality-based heuristics are commonly used to estimate the influential power of individuals in social networks. The major issues with degree-based heuristics are twofold. First, those results are only derived for the uniform IC model, in which propagation probabilities on all social links are set as same, which is rarely the case in reality; Second, intuitively, an individual's influence power depends not only on the number of direct friends, but also relates to kinds of those friends, that is, the neighbors' influence should also be taken into account when measuring one's influential power. Based on the general weighted cascade model (WC), this article proposes Pagerank-inspired heuristic scheme, PRDiscount, which explicitly discounts the influence power of those individuals who have social relationships with chosen seeds, to alleviate the “overlapping effect” occurred in behavior diffusion. Then, the authors use both the artificially constructed social network graphs (with the features of power-law degree distribution and small-world characteristics) and the real-data traces of social networks to verify the performance of their proposal. Simulations illustrate that PRDiscount can advantage over the existing degree-based discount algorithm, DegreeDiscount, and achieve the comparable performance as greedy algorithm.


Author(s):  
Amulya Yadav ◽  
Hau Chan ◽  
Albert Xin Jiang ◽  
Haifeng Xu ◽  
Eric Rice ◽  
...  

This paper presents HEALER, a software agent that recommends sequential intervention plans for use by homeless shelters, who organize these interventions to raise awareness about HIV among homeless youth. HEALER's sequential plans (built using knowledge of social networks of homeless youth) choose intervention participants strategically to maximize influence spread, while reasoning about uncertainties in the network. While previous work presents influence maximizing techniques to choose intervention participants, they do not address two real-world issues: (i) they completely fail to scale up to real-world sizes; and (ii) they do not handle deviations in execution of intervention plans. HEALER handles these issues via two major contributions: (i) HEALER casts this influence maximization problem as a POMDP and solves it using a novel planner which scales up to previously unsolvable real-world sizes; and (ii) HEALER allows shelter officials to modify its recommendations, and updates its future plans in a deviation-tolerant manner. HEALER was deployed in the real world in Spring 2016 with considerable success.


Computing ◽  
2021 ◽  
Author(s):  
Zahra Aghaee ◽  
Mohammad Mahdi Ghasemi ◽  
Hamid Ahmadi Beni ◽  
Asgarali Bouyer ◽  
Afsaneh Fatemi

2019 ◽  
Vol 11 (4) ◽  
pp. 95
Author(s):  
Wang ◽  
Zhu ◽  
Liu ◽  
Wang

Social networks have attracted a lot of attention as novel information or advertisement diffusion media for viral marketing. Influence maximization describes the problem of finding a small subset of seed nodes in a social network that could maximize the spread of influence. A lot of algorithms have been proposed to solve this problem. Recently, in order to achieve more realistic viral marketing scenarios, some constrained versions of influence maximization, which consider time constraints, budget constraints and so on, have been proposed. However, none of them considers the memory effect and the social reinforcement effect, which are ubiquitous properties of social networks. In this paper, we define a new constrained version of the influence maximization problem that captures the social reinforcement and memory effects. We first propose a novel propagation model to capture the dynamics of the memory and social reinforcement effects. Then, we modify two baseline algorithms and design a new algorithm to solve the problem under the model. Experiments show that our algorithm achieves the best performance with relatively low time complexity. We also demonstrate that the new version captures some important properties of viral marketing in social networks, such as such as social reinforcements, and could explain some phenomena that cannot be explained by existing influence maximization problem definitions.


2020 ◽  
Vol 117 (38) ◽  
pp. 23393-23400 ◽  
Author(s):  
Amir Ghasemian ◽  
Homa Hosseinmardi ◽  
Aram Galstyan ◽  
Edoardo M. Airoldi ◽  
Aaron Clauset

Most real-world networks are incompletely observed. Algorithms that can accurately predict which links are missing can dramatically speed up network data collection and improve network model validation. Many algorithms now exist for predicting missing links, given a partially observed network, but it has remained unknown whether a single best predictor exists, how link predictability varies across methods and networks from different domains, and how close to optimality current methods are. We answer these questions by systematically evaluating 203 individual link predictor algorithms, representing three popular families of methods, applied to a large corpus of 550 structurally diverse networks from six scientific domains. We first show that individual algorithms exhibit a broad diversity of prediction errors, such that no one predictor or family is best, or worst, across all realistic inputs. We then exploit this diversity using network-based metalearning to construct a series of “stacked” models that combine predictors into a single algorithm. Applied to a broad range of synthetic networks, for which we may analytically calculate optimal performance, these stacked models achieve optimal or nearly optimal levels of accuracy. Applied to real-world networks, stacked models are superior, but their accuracy varies strongly by domain, suggesting that link prediction may be fundamentally easier in social networks than in biological or technological networks. These results indicate that the state of the art for link prediction comes from combining individual algorithms, which can achieve nearly optimal predictions. We close with a brief discussion of limitations and opportunities for further improvements.


Sign in / Sign up

Export Citation Format

Share Document