The Information Construction of Wind Farm Based on SIS System

Author(s):  
Yao Wan-Ye ◽  
Yin Shi

In the wind farms, fans are widely distribution with large amount and they are away from the monitoring center, working environment is poor. In order to ensure the safe and stable operation of the wind farms, the wind power operation requirements need to be satisfied, own better function performance and stability of remote monitoring system to improve the management efficiency. In view of this, the power group increasing highly requirements on wind farm group management,but at present, the single SCADA system which the fan manufacturers offered has failed to meet the requirements. On the basis, this article designs the wind farm supervisory information system (SIS), and realizes wind farm cluster control, data analysis, performance optimization and fault warning.

Author(s):  
Yao Wan-Ye ◽  
Yin Shi

In the wind farms, fans are widely distribution with large amount and they are away from the monitoring center, working environment is poor. In order to ensure the safe and stable operation of the wind farms, the wind power operation requirements need to be satisfied, own better function performance and stability of remote monitoring system to improve the management efficiency. In view of this, the power group increasing highly requirements on wind farm group management,but at present, the single SCADA system which the fan manufacturers offered has failed to meet the requirements. On the basis, this article designs the wind farm supervisory information system (SIS), and realizes wind farm cluster control, data analysis, performance optimization and fault warning.


Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


2021 ◽  
pp. 0309524X2199245
Author(s):  
Kawtar Lamhour ◽  
Abdeslam Tizliouine

The wind industry is trying to find tools to accurately predict and know the reliability and availability of newly installed wind turbines. Failure modes, effects and criticality analysis (FMECA) is a technique used to determine critical subsystems, causes and consequences of wind turbines. FMECA has been widely used by manufacturers of wind turbine assemblies to analyze, evaluate and prioritize potential/known failure modes. However, its actual implementation in wind farms has some limitations. This paper aims to determine the most critical subsystems, causes and consequences of the wind turbines of the Moroccan wind farm of Amougdoul during the years 2010–2019 by applying the maintenance model (FMECA), which is an analysis of failure modes, effects and criticality based on a history of failure modes occurred by the SCADA system and proposing solutions and recommendations.


Author(s):  
Congshan Li ◽  
Pu Zhong ◽  
Ping He ◽  
Yan Liu ◽  
Yan Fang ◽  
...  

: Two VSC-MTDC control strategies with different combinations of controllers are proposed to eliminate transient fluctuations in the DC voltage stability, resulting from a power imbalance in a VSC-MTDC connected to wind farms. First, an analysis is performed of a topological model of a VSC converter station and a VSC-MTDC, as well as of a mathematical model of a wind turbine. Then, the principles and characteristics of DC voltage slope control, constant active power control, and inner loop current control used in the VSC-MTDC are introduced. Finally, the PSCAD/EMTDC platform is used to establish an electromagnetic transient model of a wind farm connected to a parallel three-terminal VSC-HVDC. An analysis is performed for three cases of single-phase grounding faults on the rectifier and inverter sides of a converter station and of the withdrawal of the converter station on the rectifier side. Next, the fault response characteristics of VSC-MTDC are compared and analyzed. The simulation results verify the effectiveness of the two control strategies, both of which enable the system to maintain DC voltage stability and active power balance in the event of a fault. Background: The use of a VSC-MTDC to connect wind power to the grid has attracted considerable attention in recent years. A suitable VSC-MTDC control method can enable the stable operation of a power grid. Objective: The study aims to eliminate transient fluctuations in the DC voltage stability resulting from a power imbalance in a VSC-MTDC connected to a wind farm. Method: First, the topological structure and a model of a three-terminal VSC-HVDC system connected to wind farms are studied. Second, an analysis is performed of the outer loop DC voltage slope control, constant active power control and inner loop current control of the converter station of a VSC-MTDC. Two different control strategies are proposed for the parallel three-terminal VSC-HVDC system: the first is DC voltage slope control for the rectifier station and constant active power control for the inverter station, and the second is DC voltage slope control for the inverter station and constant active power for the rectifier station. Finally, a parallel three-terminal VSC-HVDC model is built based on the PSCAD/EMTDC platform and used to verify the accuracy and effectiveness of the proposed control strategy. Results: The results of simulation analysis of the faults on the rectifier and inverter sides of the system show that both strategies can restore the system to the stable operation. The effectiveness of the proposed control strategy is thus verified. Conclusion: The control strategy proposed in this paper provides a technical reference for designing a VSC-MTDC system for wind farms.


2013 ◽  
Vol 448-453 ◽  
pp. 2535-2539
Author(s):  
Jun Cheng ◽  
Qiang Yang ◽  
Tao Zhu ◽  
Ai Meng Wang ◽  
Xue Feng Hu ◽  
...  

With the scale of the wind farm growing fast, its impact on the power system has become increasingly apparent. So the research has a significant meaning on the characteristics of dynamic stability of the power system which contains wind farms, and the stable operation of the large area interconnected power grid. In this paper it realized the application of the double-fed wind turbine grid model by using power system analysis software PSD-BPA. The analysis of the generator power Angle curve which indicate the state after the failure of N-1 shows as follows: with the wind farms integration on the grid, the damping ratio is decreased slightly but little change after the system failure of N-1, which is still live up to the standard of grid stability.


2013 ◽  
Vol 380-384 ◽  
pp. 3370-3373 ◽  
Author(s):  
Li Yang Liu ◽  
Jun Ji Wu ◽  
Shao Liang Meng

With the massive development and application of wind energy, wind power is having an increasing proportion in power grid. The changes of the wind speed in a wind farm will lead to fluctuations in the power output which would affect the stable operation of the power grid. Therefore the research of the characteristics of wind speed has become a hot topic in the field of wind energy. In the paper, the wind speed at the wind farm was simulated in a combination of wind speeds by which wind speed was decomposed of four components including basic wind, gust wind, stochastic wind and gradient wind which denote the regularity, the mutability, the gradual change and the randomness of a natural wind respectively. The model is able to reflect the characteristics of a real wind, easy for engineering simulation and can also estimate the wind energy of a wind farm through the wind speed and wake effect model. This paper has directive significance in the estimation of wind resource and the layout of wind turbines in wind farms.


2011 ◽  
Vol 383-390 ◽  
pp. 3617-3620
Author(s):  
Zhen Bi Li ◽  
Wei Wei Zhu

A supervisory control and data acquisition system is designed for wind farms, including the local controller and remote monitoring terminal. The data of the sensors collected by the lower-computer is transmitted to the host computer monitor terminal through the GPRS wireless network after preliminary treatment. In the host computer, the data is processed and displayed by the virtual instrument. The remote monitoring terminal can also send commands to control the actuators in the wind farm. Wavelet de-noising principle is used to process the data collected, improving the reliability and stability of the system.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3965
Author(s):  
Long Wang ◽  
Jianghai Wu ◽  
Zeling Tang ◽  
Tongguang Wang

The traditional power collection system design separately optimizes the connection topology and the cable cross sections, which may result in the inherent shortcoming of lacking the most economical solutions. In this pursuit, the present work envisages the development of an integrated design method for general wind farm power collection systems, which integrated the coupling random fork tree coding, union-find set loop identification, current and voltage drop calculation models, and a high performance optimization algorithm. The proposed coupling random fork tree coding, for the first time, realized the coupling code of the substation location, connection topology, and cable cross sections, providing the basis for the integration design of the power collection system. The optimization results for discrete and regular wind farms indicated that the proposed integration method achieved the best match of topology, substation location, and the cable cross sections, thus presenting the most economical scheme of the power collection system. Compared to the traditional two-step methods, the integration method used more branches while acquiring them, to maintain the lower number of wind turbines in each branch. Furthermore, it also employed large cross-section cables to reduce the energy loss caused by the impedance in the topology, thereby resulting in a slight increased cable cost; however, the total cost was minimized. The proposed method is very versatile and suitable for the optimization of power collection systems containing any number of wind turbines and substations, and can be combined with any evolutionary algorithm.


2012 ◽  
Vol 608-609 ◽  
pp. 668-672
Author(s):  
Gui Xiong He ◽  
Zhe Jiang ◽  
Li Min Jiang ◽  
Hua Guang Yan ◽  
Xiao Bing Yang

In order to promote the development of wind power and accelerate the efficient use of new energy sources, countries have brought energy storage systems into grid-connected wind farms to achieve efficient and stable operation of the wind power plant. This paper recounts the latest development status and trend of wind power at home and abroad, and introduces the principle of power conversion between energy storage system and wind farm. Based on the existing research results, it analyses power system stability related to wind power, low voltage ride-through ability of wind turbine, wind power penetration limit, as well as power quality issues. It also describes the new ideas about how to use energy storage technologies to solve the problems faced by the wind power.


2015 ◽  
Vol 713-715 ◽  
pp. 1444-1447
Author(s):  
De Yin Du ◽  
Bao Fan Chen

The amount of random variation of wind speed, wind turbine output power are volatile, a lot of wind power will be on the safe and stable operation of power systems and power quality pose serious challenges, so the wind farm wind speed and power generation forecast scheduling and management of wind farms play an important role. According wind with chaotic discuss the use of phase space CC method to reconstruct the chaotic time series, and the phase space of a wind farm 10 units were reconstructed using the weighted first order local prediction model to obtain short-term within 1h wind forecast values obtained using the power curve conversion method of generating power for each unit. By examples show that the proposed method is feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document