Discovery of Anomalous Windows through a Robust Nonparametric Multivariate Scan Statistic (RMSS)

2013 ◽  
Vol 9 (1) ◽  
pp. 28-55
Author(s):  
Lei Shi ◽  
Vandana P. Janeja

This paper studies unusual phenomena by discovering anomalous windows in multivariate spatial data. Such an anomalous window is a group of contiguous spatial objects indicating the occurrence of unusual phenomenon in terms of multiple variables. The paper presents a novel Robust non-parametric Multivariate Scan Statistic (RMSS). In contrast to the existing work, the authors’ approach is designed to deal with anomalous window discovery in multivariate data. They propose their multivariate scan statistic that employs the robust Mahalanobis distance which enables taking into account multiple behavioral attributes at the same time and their correlations for the discovery of significant anomalous windows. The proposed multivariate scan statistic is non-parametric such that it does not rely on any prior assumption about the data distribution. It is robust such that it can handle data with large amount of outliers, up to 50% of the overall data size. It is also affine equivariant such that affine transformation such as stretch or rotation of the data would not affect the results. The authors evaluate their approach with (a) real-world multivariate climate data for discovering natural disasters and climate changes, (b) real-world multivariate traffic accident data for identifying accident hubs, which are route segments with underlying accident-prone issues, and (c) synthetic data of both continuous and discrete multivariate distribution for identifying clusters of known outliers under different outlier percentage in data. They compare their results to state of the art multivariate scan statistic method (Kulldorff et al., 2007). The evaluation shows the detection power of the authors’ method, and the significant improvement over the existing methods.

2021 ◽  
Vol 153 ◽  
pp. 104773
Author(s):  
Felipe Cabral Pinto ◽  
Johnathan G. Manchuk ◽  
Clayton V. Deutsch

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 960
Author(s):  
Zhan Li ◽  
Jianhang Zhang ◽  
Ruibin Zhong ◽  
Bir Bhanu ◽  
Yuling Chen ◽  
...  

In this paper, a transmission-guided lightweight neural network called TGL-Net is proposed for efficient image dehazing. Unlike most current dehazing methods that produce simulated transmission maps from depth data and haze-free images, in the proposed work, guided transmission maps are computed automatically using a filter-refined dark-channel-prior (F-DCP) method from real-world hazy images as a regularizer, which facilitates network training not only on synthetic data, but also on natural images. A double-error loss function that combines the errors of a transmission map with the errors of a dehazed image is used to guide network training. The method provides a feasible solution for introducing priors obtained from traditional non-learning-based image processing techniques as a guide for training deep neural networks. Extensive experimental results demonstrate that, in terms of several reference and non-reference evaluation criteria for real-world images, the proposed method can achieve state-of-the-art performance with a much smaller network size and with significant improvements in efficiency resulting from the training guidance.


2020 ◽  
Vol 10 (14) ◽  
pp. 4948
Author(s):  
Marcel Neuhausen ◽  
Patrick Herbers ◽  
Markus König

Vision-based tracking systems enable the optimization of the productivity and safety management on construction sites by monitoring the workers’ movements. However, training and evaluation of such a system requires a vast amount of data. Sufficient datasets rarely exist for this purpose. We investigate the use of synthetic data to overcome this issue. Using 3D computer graphics software, we model virtual construction site scenarios. These are rendered for the use as a synthetic dataset which augments a self-recorded real world dataset. Our approach is verified by means of a tracking system. For this, we train a YOLOv3 detector identifying pedestrian workers. Kalman filtering is applied to the detections to track them over consecutive video frames. First, the detector’s performance is examined when using synthetic data of various environmental conditions for training. Second, we compare the evaluation results of our tracking system on real world and synthetic scenarios. With an increase of about 7.5 percentage points in mean average precision, our findings show that a synthetic extension is beneficial for otherwise small datasets. The similarity of synthetic and real world results allow for the conclusion that 3D scenes are an alternative to evaluate vision-based tracking systems on hazardous scenes without exposing workers to risks.


2013 ◽  
Vol 10 (4) ◽  
pp. 4597-4626
Author(s):  
S. H. P. W. Gamage ◽  
G. A. Hewa ◽  
S. Beecham

Abstract. The wide variability of hydrological losses in catchments is due to multiple variables that affect the rainfall-runoff process. Accurate estimation of hydrological losses is required for making vital decisions in design applications that are based on design rainfall models and rainfall-runoff models. Using representative single values of losses, despite their wide variability, is common practice, especially in Australian studies. This practice leads to issues such as over or under estimation of design floods. Probability distributions can be used as a better representation of losses. In particular, using joint probability approaches (JPA), probability distributions can be incorporated into hydrological loss parameters in design models. However, lack of understanding of loss distributions limits the benefit of using JPA. The aim of this paper is to identify a probability distribution function that can successfully describe hydrological losses in South Australian (SA) catchments. This paper describes suitable parametric and non-parametric distributions that can successfully describe observed loss data. The goodness-of-fit of the fitted distributions and quantification of the errors associated with quantile estimation are also discussed a two-parameter Gamma distribution was identified as one that successfully described initial loss (IL) data of the selected catchments. Also, a non-parametric standardised distribution of losses that describes both IL and continuing loss (CL) data were identified. The results obtained for the non-parametric methods were compared with similar studies carried out in other parts of Australia and a remarkable degree of consistency was observed. The results will be helpful in improving design flood applications.


Author(s):  
Pilar Garcia-Almirall ◽  
Ernest Redondo Domínguez ◽  
Francesc Valls Dalmau

The introduction of Information and Communication Technology tools in the architectural practice can be challenging. This chapter discusses an educational approach to teach Geographic Information Systems to architecture students in the Barcelona School of Architecture. The methodology uses a combination of theory lectures, worked-out examples with faded guidance using a real-world case of study, and self-directed discovery in a project-based learning activity. The results of pre-course and post-course surveys are also discussed to illustrate the workflow of students when using spatial data, their perception on using GIS applications, and their impressions regarding the development the course. Finally, the possible reasons for the limited adoption of these tools in the architectural field are also discussed.


Sign in / Sign up

Export Citation Format

Share Document