Class Level Test Case Generation in Object Oriented Software Testing

Author(s):  
N. Gupta ◽  
D. Saini ◽  
H. Saini
Author(s):  
Rajvir Singh ◽  
Anita Singhrova ◽  
Rajesh Bhatia

Detection of fault proneness classes helps software testers to generate effective class level test cases. In this article, a novel technique is presented for an optimized test case generation for ant-1.7 open source software. Class level object oriented (OO) metrics are considered as effective means to find fault proneness classes. The open source software ant-1.7 is considered for the evaluation of proposed techniques as a case study. The proposed mathematical model is the first of its kind generated using Weka open source software to select effective OO metrics. Effective and ineffective OO metrics are identified using feature selection techniques for generating test cases to cover fault proneness classes. In this methodology, only effective metrics are considered for assigning weights to test paths. The results indicate that the proposed methodology is effective and efficient as the average fault exposition potential of generated test cases is 90.16% and test cases execution time saving is 45.11%.


2018 ◽  
Vol 9 (3) ◽  
pp. 15-35 ◽  
Author(s):  
Rajvir Singh ◽  
Anita Singhrova ◽  
Rajesh Bhatia

Detection of fault proneness classes helps software testers to generate effective class level test cases. In this article, a novel technique is presented for an optimized test case generation for ant-1.7 open source software. Class level object oriented (OO) metrics are considered as effective means to find fault proneness classes. The open source software ant-1.7 is considered for the evaluation of proposed techniques as a case study. The proposed mathematical model is the first of its kind generated using Weka open source software to select effective OO metrics. Effective and ineffective OO metrics are identified using feature selection techniques for generating test cases to cover fault proneness classes. In this methodology, only effective metrics are considered for assigning weights to test paths. The results indicate that the proposed methodology is effective and efficient as the average fault exposition potential of generated test cases is 90.16% and test cases execution time saving is 45.11%.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1779
Author(s):  
Wanida Khamprapai ◽  
Cheng-Fa Tsai ◽  
Paohsi Wang ◽  
Chi-En Tsai

Test case generation is an important process in software testing. However, manual generation of test cases is a time-consuming process. Automation can considerably reduce the time required to create adequate test cases for software testing. Genetic algorithms (GAs) are considered to be effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified version of the GA to solve the multicast routing problem in network systems. MSGA can be improved to make it suitable for generating test cases. In this paper, a new algorithm called the enhanced multiple-searching genetic algorithm (EMSGA), which involves a few additional processes for selecting the best chromosomes in the GA process, is proposed. The performance of EMSGA was evaluated through comparison with seven different search-based techniques, including random search. All algorithms were implemented in EvoSuite, which is a tool for automatic generation of test cases. The experimental results showed that EMSGA increased the efficiency of testing when compared with conventional algorithms and could detect more faults. Because of its superior performance compared with that of existing algorithms, EMSGA can enable seamless automation of software testing, thereby facilitating the development of different software packages.


Author(s):  
N. Gupta ◽  
D. Saini ◽  
H. Saini

Object-oriented programming consists of several different levels of abstraction, namely, the algorithmic level, class level, cluster level, and system level. In this article, we discuss a testing technique to generate test cases at class level for object-oriented programs. The formal object oriented class specification is used to develop a test model. This test model is based on finite state machine specification. The class specification and the test model is analyzed to select a set of test data for each method of the class, and finally the test cases can be generated using other testing techniques like finite-state testing or data-flow testing.


2010 ◽  
Vol 10 (4-6) ◽  
pp. 659-674 ◽  
Author(s):  
MIGUEL GÓMEZ-ZAMALLOA ◽  
ELVIRA ALBERT ◽  
GERMÁN PUEBLA

AbstractTesting is a vital part of the software development process. Test Case Generation (TCG) is the process of automatically generating a collection of test-cases which are applied to a system under test. White-box TCG is usually performed by means of symbolic execution, i.e., instead of executing the program on normal values (e.g., numbers), the program is executed on symbolic values representing arbitrary values. When dealing with an object-oriented (OO) imperative language, symbolic execution becomes challenging as, among other things, it must be able to backtrack, complex heap-allocated data structures should be created during the TCG process and features like inheritance, virtual invocations and exceptions have to be taken into account. Due to its inherent symbolic execution mechanism, we pursue in this paper that Constraint Logic Programming (CLP) has a promising application field in tcg. We will support our claim by developing a fully CLP-based framework to TCG of an OO imperative language, and by assessing it on a corresponding implementation on a set of challenging Java programs.


Sign in / Sign up

Export Citation Format

Share Document