scholarly journals Time-Aware CF and Temporal Association Rule-Based Personalized Hybrid Recommender System

2021 ◽  
Vol 33 (3) ◽  
pp. 19-34
Author(s):  
Dan Yang ◽  
Zheng Tie Nie ◽  
Fajun Yang

Most recommender systems usually combine several recommendation methods to enhance the recommendation accuracy. Collaborative filtering (CF) is a best-known personalized recommendation technique. While temporal association rule-based recommendation algorithm can discover users' latent interests with time-specific leveraging historical behavior data without domain knowledge. The concept-drifting and user interest-drifting are two key problems affecting the recommendation performance. Aiming at the above problems, a time-aware CF and temporal association rule-based personalized hybrid recommender system, TP-HR, is proposed. The proposed time-aware CF algorithm considers evolving features of users' historical feedback. And time-aware users' similar neighbors selecting measure and time-aware item rating prediction function are proposed to keep track of the dynamics of users' preferences. The proposed temporal association rule-based recommendation algorithm considers the time context of users' historical behaviors when mining effective temporal association rules. Experimental results on real datasets show the feasibility and performance improvement of the proposed hybrid recommender system compared to other baseline approaches.

SAGE Open ◽  
2015 ◽  
Vol 5 (2) ◽  
pp. 215824401557994 ◽  
Author(s):  
Binoy B. Nair ◽  
V. P. Mohandas ◽  
Nikhil Nayanar ◽  
E. S. R. Teja ◽  
S. Vigneshwari ◽  
...  

2018 ◽  
Vol 2 (4) ◽  
pp. 271 ◽  
Author(s):  
Outmane Bourkoukou ◽  
Essaid El Bachari

Personalized courseware authoring based on recommender system, which is the process of automatic learning objects selecting and sequencing, is recognized as one of the most interesting research field in intelligent web-based education. Since the learner’s profile of each learner is different from one to another, we must fit learning to the different needs of learners. In fact from the knowledge of the learner’s profile, it is easier to recommend a suitable set of learning objects to enhance the learning process. In this paper we describe a new adaptive learning system-LearnFitII, which can automatically adapt to the dynamic preferences of learners. This system recognizes different patterns of learning style and learners’ habits through testing the psychological model of learners and mining their server logs. Firstly, the device proposed a personalized learning scenario to deal with the cold start problem by using the Felder and Silverman’s model. Next, it analyzes the habits and the preferences of the learners through mining the information about learners’ actions and interactions. Finally, the learning scenario is revisited and updated using hybrid recommender system based on K-Nearest Neighbors and association rule mining algorithms. The results of the system tested in real environments show that considering the learner’s preferences increases learning quality and satisfies the learner.


2005 ◽  
Vol 277-279 ◽  
pp. 287-292 ◽  
Author(s):  
Lu Na Byon ◽  
Jeong Hye Han

As electronic commerce progresses, temporal association rules are developed by time to offer personalized services for customer’s interests. In this article, we propose a temporal association rule and its discovering algorithm with exponential smoothing filter in a large transaction database. Through experimental results, we confirmed that this is more precise and consumes a shorter running time than existing temporal association rules.


Author(s):  
Giuliano Armano ◽  
Alessandro Giuliani ◽  
Eloisa Vargiu

Information Filtering deals with the problem of selecting relevant information for a given user, according to her/his preferences and interests. In this chapter, the authors consider two ways of performing information filtering: recommendation and contextual advertising. In particular, they study and analyze them according to a unified view. In fact, the task of suggesting an advertisement to a Web page can be viewed as the task of recommending an item (the advertisement) to a user (the Web page), and vice versa. Starting from this insight, the authors propose a content-based recommender system based on a generic solution for contextual advertising and a hybrid contextual advertising system based on a generic hybrid recommender system. Relevant case studies have been considered (i.e., a photo recommender and a Web advertiser) with the goal of highlighting how the proposed approach works in practice. In both cases, results confirm the effectiveness of the proposed solutions.


Author(s):  
Reshu Agarwal

A modified framework that applies temporal association rule mining to inventory management is proposed in this article. The ordering policy of frequent items is determined and inventory is classified based on loss rule. This helps inventory managers to determine optimum order quantity of frequent items together with the most profitable item in each time-span. An example is illustrated to validate the results.


Sign in / Sign up

Export Citation Format

Share Document