Analysis of Potential Energy Release Rate of Composite Laminate Based on Timoshenko Beam Theory

Author(s):  
Kyohei Kondo
2007 ◽  
Vol 334-335 ◽  
pp. 513-516
Author(s):  
Kyohei Kondo

The Timoshenko beam theory is used to model each part of cracked beam and to calculate the potential energy release rate. Calculations are given for the double cantilever beam specimen, which is simulated as two separate beams connected elastically along the uncracked interface.


2006 ◽  
Vol 74 (5) ◽  
pp. 1046-1048 ◽  
Author(s):  
Z.-H. Jin ◽  
C. T. Sun

It is well known that, for homogeneous materials, the path-independent J contour integral is the (potential) energy release rate. For general nonhomogeneous, or graded materials, such a contour integral as the energy release rate does not exist. This work presents a rigorous derivation of the extended J integral for general graded materials from the potential energy variation with crack extension. Effects of crack shielding and amplification due to a graded interlayer in an elastic-plastic material system are discussed in terms of this integral.


Author(s):  
Weiling Zheng ◽  
Longxi Zheng

In order to study whether the interfacial crack will grow or not in the composite laminates, the energy release rate of a crack in three-point bending model was obtained by using the Timoshenko beam theory and local generalized forces. The results of energy release rate were validated by the finite element results. The results indicate that the energy release rate of left crack tip is equal to that of the right crack tip when the crack before the crack goes cross the loading point; after the crack goes cross the loading point, the energy release rate of the left crack tip increases and then decreases gradually, while the energy release rate of right crack tip decreases first and increases later; the energy release rate of left crack tip is equal to that of the right crack tip again when the crack is symmetric with the loading point.


2010 ◽  
Vol 78 (1) ◽  
Author(s):  
M. Y. He ◽  
J. W. Hutchinson ◽  
A. G. Evans

A stretch/bend method for the in situ measurement of the delamination toughness of coatings attached to substrates is described. A beam theory analysis is presented that illustrates the main features of the test. The analysis is general and allows for the presence of residual stress. It reveals that the test produces stable extension of delaminations, rendering it suitable for multiple measurements in a single test. It also provides scaling relations and enables estimates of the loads needed to extend delaminations. Finite element calculations reveal that the beam theory solutions are accurate for slender beams, but overestimate the energy release rate for stubbier configurations and short delaminations. The substantial influence of residual stress on the energy release rate and phase angle is highly dependent on parameters such as the thickness and modulus ratio for the two layers. Its effect must be included to obtain viable measurements of toughness. In a companion paper, the method has been applied to a columnar thermal barrier coating deposited onto a Ni-based super-alloy.


Author(s):  
Eva Kormaníková

Abstract The paper presents the mixed-mode delamination response of laminate plate made of two sublaminates. To this purpose a sliding load mode of delamination is proposed as failure model. A quasistatic rate-independent delamination problem of laminate plates with a finite thickness is considered. A rate-independent delamination model for a laminated Kirchhoff-Love plate is obtained. The failure model is implemented in ANSYS code to calculate the mixed-mode delamination response as energy release rate along the lamination front.


2005 ◽  
Vol 73 (5) ◽  
pp. 876-883 ◽  
Author(s):  
Lifeng Ma ◽  
Tian Jian Lu ◽  
Alexander M. Korsunsky

In this paper, the mechanics of a semi-infinite crack interacting with near crack-tip singularities (e.g., dislocations) in two-dimensional solids is investigated using the concept of potential energy release rate. The spontaneous relationship between the crack potential energy release rate and the well-known vector conservative integral Ji(i=1,2) is derived. It is demonstrated that J1 and J2 integrals are equally important in solving crack problems. This allows a more rational criterion to be proposed, based on the criterion of maximum energy release rate, to assess the so-called shielding/amplification effect on the crack tip due to the presence of the singularities. It is shown that the new criterion can not only assess the shielding/amplification effect under pure mode I or mode II remote loading, but also efficiently assess crack-singularity interaction under mixed mode remote loading. Simultaneously, it is found by re-examining the Ji integrals that there exists a simple but universal relation among the three values of the vector Ji integral corresponding separately to the contributions induced from the semi-infinite crack tip, the singularity, and the remote loading. Next, a multi-singularity-crack interaction model is addressed, and the closed-form solution is obtained. Finally, as an example, the problem of a single dislocation interacting with a main crack is solved to demonstrate the validity of the proposed model and the new criterion.


Sign in / Sign up

Export Citation Format

Share Document